Deep M2CDL: Deep Multi-Scale Multi-Modal Convolutional Dictionary Learning Network

人工智能 计算机科学 卷积神经网络 比例(比率) 情态动词 深度学习 机器学习 模式识别(心理学) 化学 地图学 高分子化学 地理
作者
Xin Deng,Jingyi Xu,Fangyuan Gao,Xiancheng Sun,Mai Xu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (5): 2770-2787 被引量:8
标识
DOI:10.1109/tpami.2023.3334624
摘要

For multi-modal image processing, network interpretability is essential due to the complicated dependency across modalities. Recently, a promising research direction for interpretable network is to incorporate dictionary learning into deep learning through unfolding strategy. However, the existing multi-modal dictionary learning models are both single-layer and single-scale, which restricts the representation ability. In this paper, we first introduce a multi-scale multi-modal convolutional dictionary learning (M 2 CDL) model, which is performed in a multi-layer strategy, to associate different image modalities in a coarse-to-fine manner. Then, we propose a unified framework namely DeepM 2 CDL derived from the M 2 CDL model for both multi-modal image restoration (MIR) and multi-modal image fusion (MIF) tasks. The network architecture of DeepM 2 CDL fully matches the optimization steps of the M 2 CDL model, which makes each network module with good interpretability. Different from handcrafted priors, both the dictionary and sparse feature priors are learned through the network. The performance of the proposed DeepM 2 CDL is evaluated on a wide variety of MIR and MIF tasks, which shows the superiority of it over many state-of-the-art methods both quantitatively and qualitatively. In addition, we also visualize the multi-modal sparse features and dictionary filters learned from the network, which demonstrates the good interpretability of the DeepM 2 CDL network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sherry完成签到,获得积分10
2秒前
桐桐应助YoungLee采纳,获得10
2秒前
lth完成签到,获得积分10
4秒前
zhangxin完成签到,获得积分10
5秒前
9秒前
10秒前
情怀应助zhangxin采纳,获得10
10秒前
zz完成签到,获得积分10
11秒前
慕薯殿焚完成签到,获得积分10
12秒前
香蕉觅云应助kathy采纳,获得30
13秒前
lee发布了新的文献求助10
13秒前
缥缈夏彤完成签到,获得积分10
14秒前
勤恳冰淇淋完成签到 ,获得积分10
15秒前
16秒前
华仔应助Passion采纳,获得10
17秒前
海鸥发布了新的文献求助10
18秒前
18秒前
研友_VZG7GZ应助bobo呀采纳,获得10
19秒前
CC发布了新的文献求助10
21秒前
maoni应助曾经不言采纳,获得10
22秒前
ww关闭了ww文献求助
22秒前
22秒前
夕荀发布了新的文献求助10
23秒前
29秒前
30秒前
32秒前
qianhuxinyu完成签到,获得积分10
33秒前
dada完成签到,获得积分10
34秒前
36秒前
chentao发布了新的文献求助10
36秒前
maoni应助海鸥采纳,获得10
38秒前
赟yun完成签到,获得积分0
39秒前
kkk完成签到,获得积分20
40秒前
40秒前
40秒前
beauty_bear完成签到,获得积分10
40秒前
Lucas应助chentao采纳,获得10
44秒前
快乐枫发布了新的文献求助10
45秒前
46秒前
maomao发布了新的文献求助10
46秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171461
求助须知:如何正确求助?哪些是违规求助? 3706922
关于积分的说明 11695769
捐赠科研通 3392549
什么是DOI,文献DOI怎么找? 1860814
邀请新用户注册赠送积分活动 920545
科研通“疑难数据库(出版商)”最低求助积分说明 832754