Management of COPD Exacerbation, a Prediction tool for exacerbation in General Practitioners based Swiss Chronic Obstructive Pulmonary Disease (COPD) cohort

恶化 慢性阻塞性肺病 医学 列线图 队列 内科学 阿卡克信息准则 慢性阻塞性肺病加重期 曲线下面积 物理疗法 急诊医学 慢性阻塞性肺疾病急性加重期 机器学习 计算机科学
作者
Nebal Abu Hussein,Stéphanie Giezendanner,Pierre‐Olivier Bridevaux,Th. Geiser,Ch. Von Garnier,Ladina Joos Zellweger,Malcolm Kohler,David Miedinger,Z. Pasha,Robert Thurnheer,M. Tamm,Jörg D. Leuppi
标识
DOI:10.1183/13993003.congress-2023.pa547
摘要

Background: COPD exacerbations are correlated with higher hospitalization rate and mortality. Our objective was to find risk factors for exacerbations in primary care cohort and to develop statistical model to predict exacerbation. Methods: In questionnaire-based cohort, COPD patients enrolled in the cohort. Data was collected for 2 years. COPD patients were seen by their GPs at least twice a year. Data was split into training (75%) and validation (25%) datasets. We developed negative binomial regression model using training dataset to predict exacerbation rate within 1 year. Based on Akaike's information criterion, an exacerbation prediction model was developed, overall performance was externally validated in validation dataset. Then we created prediction nomogram. Results: 229 COPD patients (65%male, 67yrs) were analyzed. While 77% of patients had no exacerbation during the follow-up there were 73 recurrent exacerbations in total. The average number of exacerbations per subject was 0.32 during a median of 1.5yrs. The best subset in training dataset found that lower forced expiratory volume, high scores on MRC dyspnoea scale, exacerbation history, and not being on combination therapy at baseline were associated with higher rate of exacerbation. When validated, the area-under-curve (AUC) was 0.75 for one or more exacerbations as well as 0.75 for 2 or more exacerbations. Calibration was accurate. Conclusion: Previous exacerbations and severe symptoms appear to be predictors for exacerbation in COPD patients. Nomograms built from these models can assist clinicians and patients in shared decision-making process of their care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
琪凯定理完成签到,获得积分10
1秒前
爆米花应助www采纳,获得10
1秒前
LLL完成签到,获得积分20
2秒前
2秒前
Elena发布了新的文献求助10
2秒前
2秒前
小勇完成签到 ,获得积分10
4秒前
4秒前
飘逸平卉发布了新的文献求助10
4秒前
无辜的傲安完成签到 ,获得积分20
5秒前
wang完成签到,获得积分10
5秒前
李爱国应助shea采纳,获得10
6秒前
xxfsx应助楼下太吵了采纳,获得10
6秒前
中岛由贵的狗完成签到,获得积分10
6秒前
你眼带笑完成签到 ,获得积分10
7秒前
加油干完成签到 ,获得积分10
7秒前
ikki发布了新的文献求助10
7秒前
科研通AI5应助小鱼采纳,获得10
7秒前
7秒前
碎月发布了新的文献求助10
9秒前
冷艳的竺完成签到,获得积分10
9秒前
Bryn_Wang发布了新的文献求助10
10秒前
10秒前
大模型应助然宝c采纳,获得10
10秒前
Yancy发布了新的文献求助10
10秒前
小蚊子完成签到,获得积分10
11秒前
可爱的函函应助www采纳,获得10
11秒前
11秒前
打打应助没什么存在感采纳,获得10
11秒前
搜集达人应助临江仙采纳,获得10
12秒前
12秒前
Lucas应助ikki采纳,获得10
13秒前
研友_8DrX3n发布了新的文献求助50
13秒前
科研小子发布了新的文献求助10
14秒前
研友_VZG7GZ应助149865采纳,获得10
15秒前
3469907229发布了新的文献求助10
15秒前
搜集达人应助皮皮采纳,获得10
15秒前
青塘龙仔发布了新的文献求助10
15秒前
猪大大完成签到,获得积分10
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206131
求助须知:如何正确求助?哪些是违规求助? 4384653
关于积分的说明 13654174
捐赠科研通 4242976
什么是DOI,文献DOI怎么找? 2327791
邀请新用户注册赠送积分活动 1325532
关于科研通互助平台的介绍 1277639