Machine and deep learning for modelling heat-health relationships

广义加性模型 分布滞后 多层感知器 梯度升压 线性模型 决策树 随机森林 人口 机器学习 环境科学 广义线性模型 人工智能 计算机科学 统计 人工神经网络 数学 环境卫生 医学
作者
Jérémie Boudreault,Céline Campagna,Fateh Chebana
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:892: 164660-164660 被引量:15
标识
DOI:10.1016/j.scitotenv.2023.164660
摘要

Extreme heat events pose a significant threat to population health that is amplified by climate change. Traditionally, statistical models have been used to model heat-health relationships, but they do not consider potential interactions between temperature-related and air pollution predictors. Artificial intelligence (AI) methods, which have gained popularity for health applications in recent years, can account for these complex and non-linear interactions, but have been underutilized in modelling heat-related health impacts. In this paper, six machine and deep learning models were considered to model the heat-mortality relationship in Montreal (Canada) and compared to three statistical models commonly used in the field. Decision Tree (DT), Random Forest (RF), Gradient Boosting Machine (GBM), Single- and Multi-Layer Perceptrons (SLP and MLP), Long Short-Term Memory (LSTM), Generalized Linear and Additive Models (GLM and GAM), and Distributed Lag Non-Linear Model (DLNM) were employed. Heat exposure was characterized by air temperature, relative humidity and wind speed, while air pollution was also included in the models using five pollutants. The results confirmed that air temperature at lags of up to 3 days was the most important variable for the heat-mortality relationship in all models. NO2 concentration and relative humidity (at lags 1 to 3 days) were also particularly important. Ensemble tree-based methods (GBM and RF) outperformed other approaches to model daily mortality during summer months based on three performance criteria. However, a partial validation during two recent major heatwaves highlighted that non-linear statistical models (GAM and DLNM) and simpler decision tree may more closely reproduce the spike of mortality observed during such events. Hence, both machine learning and statistical models are relevant for modelling heat-health relationships depending on the end user goal. Such extensive comparative analysis should be extended to other health outcomes and regions.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_85YNe8完成签到,获得积分10
刚刚
zzh发布了新的文献求助10
1秒前
Mythic完成签到,获得积分10
1秒前
争气完成签到,获得积分10
2秒前
MM应助Juli采纳,获得10
11秒前
11秒前
12秒前
狂奔弟弟2完成签到 ,获得积分10
13秒前
学术大亨完成签到,获得积分10
17秒前
jasmine0211完成签到 ,获得积分10
17秒前
PhD_Essence发布了新的文献求助10
18秒前
狂奔弟弟完成签到 ,获得积分10
18秒前
威武灵阳完成签到,获得积分10
23秒前
25秒前
26秒前
李拔润发布了新的文献求助10
31秒前
小蘑菇应助lilili采纳,获得10
31秒前
JamesPei应助悦悦要早睡哦采纳,获得10
32秒前
32秒前
辉哥发布了新的文献求助10
33秒前
Howie.Wong完成签到,获得积分10
33秒前
33秒前
34秒前
Akim应助jasmine采纳,获得30
38秒前
熊阿阿完成签到 ,获得积分10
39秒前
阿宋发布了新的文献求助10
41秒前
43秒前
湖以完成签到 ,获得积分10
43秒前
45秒前
45秒前
46秒前
听雨应助科研通管家采纳,获得20
46秒前
Mic应助科研通管家采纳,获得10
46秒前
星辰大海应助科研通管家采纳,获得10
46秒前
Mic应助科研通管家采纳,获得10
46秒前
热情的机器猫完成签到,获得积分10
47秒前
领导范儿应助echo采纳,获得10
49秒前
BSDL发布了新的文献求助10
49秒前
52秒前
幽默的龙猫完成签到 ,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Psychological Well-being The Complexities of Mental and Emotional Health 500
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5857049
求助须知:如何正确求助?哪些是违规求助? 6326618
关于积分的说明 15635661
捐赠科研通 4971386
什么是DOI,文献DOI怎么找? 2681424
邀请新用户注册赠送积分活动 1625389
关于科研通互助平台的介绍 1582357