Effect of User Decision and Environmental Factors on Computationally Derived River Networks

数字高程模型 水文学 仰角(弹道) 支流 环境科学 水文学(农业) 遥感 计算机科学 地图学 地理 地质学 工程类 岩土工程 结构工程
作者
N. R. Olsen,Ahmad A. Tavakoly,K. A. McCormack,Heather K Levin
出处
期刊:Journal Of Geophysical Research: Earth Surface [Wiley]
卷期号:128 (4) 被引量:2
标识
DOI:10.1029/2022jf006873
摘要

Abstract Despite recent developments of continental and global vector‐based river networks, the impact of digital elevation model selection, stream initiation area and environmental parameters including land cover, and elevation, remain unexplored at large scales. To fill this gap, vector river networks based on multiple data sets are compared to the National Hydrography Dataset Plus High Resolution flowpaths. Using TauDEM, river networks from three conditioned Digital Elevation Models (DEMs) were produced at multiple thresholds for stream initiation. OpenCLC, a software package for the comparison of hydrographic networks, was used to compare digital hydrographic networks with the NHDPlus HR flowlines data set over more than 35,00 basins. Networks derived from the 12 m Tandem‐X data set showed similar results as the MERIT Hydro with 90 m resolution until the application of a sophisticated stream burning methodology improved performance significantly. The optimal CLC is obtained at 1‐km threshold for Hydrological Data and Maps Based on SHuttle Elevation Derivatives at multiple Scales and MERIT Hydro‐gridded data sets, quality declined with smaller thresholds. Spatial patterns in river‐network quality were observed and were associated with dominant land classification, with greater forest coverage associated with significantly better quality and greater wetland presence with lower quality networks. This study demonstrates user selection of DEM, and threshold combined with environmental factors (vegetation, water coverage, and precipitation) play a significant role in river‐network quality compared to the DEM selection, and that without sophisticated conditioning, a higher resolution base DEM does not necessarily produce a better river network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
桐桐应助紧张的寒梦采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
赘婿应助尊敬的惠采纳,获得10
1秒前
yana应助科研通管家采纳,获得20
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
Sylvie完成签到,获得积分10
3秒前
3秒前
4秒前
Hao关注了科研通微信公众号
4秒前
精明曼冬发布了新的文献求助10
6秒前
QVQ完成签到,获得积分10
7秒前
7秒前
景飞丹完成签到,获得积分10
8秒前
JuJu发布了新的文献求助10
9秒前
典雅的俊驰应助momo采纳,获得30
9秒前
9秒前
10秒前
Owllight完成签到 ,获得积分20
10秒前
11秒前
11秒前
11秒前
11秒前
zwy应助建辰十五采纳,获得10
12秒前
十月发布了新的文献求助10
12秒前
Kevin_KYT_577完成签到,获得积分10
12秒前
现代的十八完成签到,获得积分10
13秒前
一颗西柚发布了新的文献求助10
13秒前
13秒前
CQ发布了新的文献求助10
13秒前
LLL完成签到,获得积分10
13秒前
顶级洋仔完成签到,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794234
求助须知:如何正确求助?哪些是违规求助? 3339125
关于积分的说明 10294117
捐赠科研通 3055695
什么是DOI,文献DOI怎么找? 1676766
邀请新用户注册赠送积分活动 804705
科研通“疑难数据库(出版商)”最低求助积分说明 762051