Machine learning for improved medical device management: A focus on defibrillator performance

随机森林 计算机科学 机器学习 朴素贝叶斯分类器 人工智能 可扩展性 决策树 逻辑回归 贝叶斯定理 支持向量机 贝叶斯概率 数据库
作者
Lemana Spahić,Luka Jeremić,Ivana Lalatović,Tatjana Muratović,Amra Džuho,Lejla Gurbeta Pokvić,Almir Badnjević
出处
期刊:Technology and Health Care [IOS Press]
标识
DOI:10.1177/09287329241290944
摘要

Background Poorly regulated and insufficiently maintained medical devices (MDs) carry high risk on safety and performance parameters impacting the clinical effectiveness and efficiency of patient diagnosis and treatment. After the MD directive (MDD) had been in force for 25 years, in 2017 the new MD Regulation (MDR) was introduced. One of the more stringent requirement is a need for better control of MD safety and performance post-market surveillance mechanisms. Objective To address this, we have developed an automated system for management of MDs, based on their safety and performance measurement parameters, that use machine learning algorithm as a core of its functioning. Methods In total, 1997 samples were collected during the inspection process of defibrillator inspections performed by an ISO 17020 accredited laboratory at various healthcare institutions in Bosnia and Herzegovina. This paper presents solution developed for defibrillators, but proposed system is scalable to any other type of MDs, both diagnostic and therapeutic. Results Various machine learning algorithms were considered, including Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB) and Logistic Regression (LR). In addition, random forest regressor and XG Boost algorithms were tested for their predictive capabilities in the field of defibrillator output error prediction. These algorithms were selected because of their ability to handle large datasets and their potential for achieving high prediction accuracy. The highest accuracy achieved on this dataset was 94.8% using the Naive Bayes algorithm. The XGBoost Regressor with its r 2 of 0.99 emerged as a powerful tool, showcasing exceptional predictive accuracy and the ability to capture a substantial portion of the dataset's variability. Conclusion The results of this study demonstrate that clinical engineering (CE) and health technology management (HTM) departments in healthcare institutions can benefit from proposed automatization of defibrillator maintenance scheduling in terms of increased safety and treatment of patients, on one side, and cost optimization in MD management departments, on the other side.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
essemmy发布了新的文献求助50
1秒前
theforth发布了新的文献求助10
1秒前
2秒前
科研通AI5应助黑白画采纳,获得10
2秒前
zho应助李剑鸿采纳,获得10
2秒前
Elsa完成签到,获得积分10
4秒前
yy关闭了yy文献求助
4秒前
YOYO完成签到,获得积分10
4秒前
cfz发布了新的文献求助10
4秒前
5秒前
夏子墨发布了新的文献求助10
6秒前
7秒前
小二郎应助memory采纳,获得10
7秒前
毒蛇如我发布了新的文献求助10
7秒前
9秒前
10秒前
echo0411完成签到,获得积分10
10秒前
才欣宇完成签到,获得积分10
11秒前
11秒前
11秒前
欣慰水蓝发布了新的文献求助10
12秒前
12秒前
考博圣体完成签到 ,获得积分10
12秒前
从容的巧曼完成签到 ,获得积分10
12秒前
夏昱完成签到,获得积分10
13秒前
14秒前
小二发布了新的文献求助10
15秒前
melon发布了新的文献求助10
15秒前
子非魚发布了新的文献求助10
15秒前
廾匸发布了新的文献求助10
16秒前
FF完成签到 ,获得积分10
17秒前
zho应助刻苦雪晴采纳,获得10
17秒前
ComeOn发布了新的文献求助10
18秒前
18秒前
迷人的灵萱完成签到 ,获得积分10
18秒前
小超超完成签到 ,获得积分10
19秒前
王爷教你白给完成签到,获得积分10
20秒前
sususu完成签到,获得积分10
21秒前
小二发布了新的文献求助10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792079
求助须知:如何正确求助?哪些是违规求助? 3336334
关于积分的说明 10280285
捐赠科研通 3052927
什么是DOI,文献DOI怎么找? 1675426
邀请新用户注册赠送积分活动 803446
科研通“疑难数据库(出版商)”最低求助积分说明 761349