亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on simulation of human brain neural network and signal processing technology

计算机科学 人工神经网络 信号处理 信号(编程语言) 人脑 神经科学 人工智能 数字信号处理 计算机硬件 心理学 程序设计语言
作者
Haochen Wang
标识
DOI:10.1117/12.3054441
摘要

With the cross development of computational neuroscience and artificial intelligence, research on human brain neural network simulation and signal processing technology has become a hot topic of common concern in both academia and industry. This study used a multi-level and multi-scale computational model and high-precision algorithm to simulate the dynamic behavior of human brain neural networks, exploring the complex interactions between neurons and their impact on information processing capabilities. Real time dynamic simulation of billions of neurons was achieved on a simulation platform using ultra large-scale integrated circuit chips, simulating signal processing patterns similar to those of the human brain. By using an improved backpropagation algorithm to decode and reconstruct neural signals, the efficiency of the algorithm and the accuracy of signal processing have been improved. On this basis, combined with experimental data obtained from functional magnetic resonance imaging, the similarities and differences between neural network simulation results and actual human brain activity were compared and analyzed, revealing the potential connection between cognitive function and brain network activity patterns. This study not only achieved new breakthroughs in simulation technology and signal processing algorithms, but also provided a new quantitative tool and theoretical support for related neuroscience research, which is of great significance for the development of brain computer interfaces and intelligent information processing systems. In addition, the study also delved into the balance between ensuring model complexity and processing efficiency, as well as the challenges and opportunities brought by interdisciplinary collaboration in the field of neuroscience. Through cross validation and error analysis of simulation experiments, the effectiveness of the model and the accuracy of prediction results were ensured. Based on this, feasible suggestions for optimizing neural network structures and signal decoding strategies have been extracted, providing possible new avenues for future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助aaa采纳,获得10
14秒前
重庆森林完成签到,获得积分10
22秒前
cz完成签到 ,获得积分10
32秒前
区区应助breeze采纳,获得30
43秒前
真实的瑾瑜完成签到 ,获得积分10
57秒前
57秒前
美满尔蓝完成签到,获得积分10
1分钟前
小蘑菇应助自行者采纳,获得10
1分钟前
1分钟前
安徒完成签到,获得积分10
1分钟前
1分钟前
自行者发布了新的文献求助10
1分钟前
lx840518完成签到 ,获得积分10
1分钟前
自行者完成签到,获得积分10
1分钟前
草木完成签到 ,获得积分10
1分钟前
躺平完成签到 ,获得积分10
1分钟前
wodetaiyangLLL完成签到 ,获得积分10
1分钟前
西伯利亚老母猪完成签到,获得积分10
2分钟前
小橘子吃傻子完成签到,获得积分10
2分钟前
2分钟前
Omni发布了新的文献求助10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
2分钟前
123开花发布了新的文献求助10
3分钟前
3分钟前
Truman完成签到,获得积分10
3分钟前
Truman发布了新的文献求助10
3分钟前
3分钟前
Mrmao0213发布了新的文献求助10
4分钟前
隐形曼青应助Mrmao0213采纳,获得10
4分钟前
今后应助梅龙祥采纳,获得30
4分钟前
4分钟前
4分钟前
秋日思语发布了新的文献求助10
4分钟前
小湛湛完成签到 ,获得积分10
4分钟前
12345发布了新的文献求助50
4分钟前
12345完成签到,获得积分10
5分钟前
小马甲应助小陈爱科研采纳,获得10
5分钟前
专一的忆寒完成签到,获得积分10
5分钟前
lillian完成签到,获得积分10
5分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210558
求助须知:如何正确求助?哪些是违规求助? 4387318
关于积分的说明 13662686
捐赠科研通 4247192
什么是DOI,文献DOI怎么找? 2330142
邀请新用户注册赠送积分活动 1327893
关于科研通互助平台的介绍 1280516