NeutralNet: an application of deep neural networks to pulse shape discrimination for use with accelerator-based neutron sources

中子 人工神经网络 脉搏(音乐) 核工程 计算机科学 深层神经网络 中子源 核物理学 物理 人工智能 工程类 电信 探测器
作者
Richard Garnett,Ariel Amsellem,Arun Persaud,Alex Miller,M. B. Smith,Soo Hyun Byun
出处
期刊:Applied Radiation and Isotopes [Elsevier]
卷期号:: 111891-111891
标识
DOI:10.1016/j.apradiso.2025.111891
摘要

Recent works have implemented machine learning based solutions for many complex classification tasks including pulse shape discrimination in radiation detection. The present work aims to advance the application of machine learning to pulse shape discrimination in neutron detection. A machine learning based neutron-gamma discrimination technique is investigated for various neutron energy distributions produced from DD, DT, (α,n), and spontaneous fission neutron sources. Comprehensive investigations on the training data generation techniques, the impact of the PMT bias, and the discrimination performance are conducted. With the increase of the PMT bias voltage, the neutron classification performance peaked at 1500 V with 81 % of validation neutrons being identified at a false positive rate of 1E-6 while the further bias increase led to a notable degradation in performance. The unsatisfactory classification performance encountered when training off of one neutron source type and classifying neutrons from the other source types was greatly improved with the application of the transfer learning techniques. The remaining variation in the performance was accounted for by the energy dependence of the neutron classification. It was demonstrated that at the 1E-6 FPR specificity level, the events within the region of overlap for neutron and photon populations could be separated, down to a detected energy of 30 keVee. An overall intrinsic neutron detection efficiency of 12.5 % was achieved for the 252Cf neutron source at a false positive rate of 1E-6.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuzhu发布了新的文献求助10
刚刚
Nash完成签到,获得积分10
刚刚
白江虎发布了新的文献求助10
刚刚
尊敬莺发布了新的文献求助10
刚刚
1秒前
Bran发布了新的文献求助10
1秒前
1秒前
小茶完成签到 ,获得积分10
1秒前
林林完成签到 ,获得积分10
1秒前
情怀应助pyimh采纳,获得10
2秒前
3秒前
Akim应助自觉一德采纳,获得10
3秒前
xfy完成签到,获得积分10
3秒前
桃喜芒芒发布了新的文献求助10
3秒前
在水一方应助王明磊采纳,获得10
3秒前
畅畅发布了新的文献求助10
3秒前
4秒前
5秒前
李卓霖发布了新的文献求助10
6秒前
平常安雁完成签到 ,获得积分10
6秒前
7秒前
白江虎完成签到,获得积分10
7秒前
尊敬莺完成签到,获得积分10
7秒前
7秒前
现实的幻柏完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
Ethan发布了新的文献求助10
8秒前
8秒前
无花果应助舍得采纳,获得10
8秒前
罗兴鲜发布了新的文献求助10
9秒前
金阿林在科研应助小时采纳,获得10
9秒前
小菊酱完成签到,获得积分20
9秒前
luo完成签到 ,获得积分10
9秒前
同瑶发布了新的文献求助10
10秒前
Lucas应助医学小怪兽采纳,获得10
10秒前
搜集达人应助风清扬采纳,获得10
10秒前
WQY完成签到,获得积分10
10秒前
louis dai发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396737
求助须知:如何正确求助?哪些是违规求助? 4517074
关于积分的说明 14062206
捐赠科研通 4428957
什么是DOI,文献DOI怎么找? 2432178
邀请新用户注册赠送积分活动 1424617
关于科研通互助平台的介绍 1403657