Material Stiffness in Cooperation with Macrophage Paracrine Signals Determines the Tenogenic Differentiation of Mesenchymal Stem Cells

旁分泌信号 细胞生物学 间充质干细胞 干细胞 细胞分化 肌腱 生物 解剖 生物化学 受体 基因
作者
Renwang Sheng,Jia Liu,Wei Zhang,Yifan Luo,Zhixuan Chen,Jiayu Chi,Qingyun Mo,Mingyue Wang,Yuzhi Sun,Chuanquan Liu,Yanan Zhang,Yue Zhu,Baian Kuang,Chunguang Yan,Haoyang Liu,Ludvig J. Backman,Jialin Chen
出处
期刊:Advanced Science [Wiley]
卷期号:10 (17) 被引量:9
标识
DOI:10.1002/advs.202206814
摘要

Stiffness is an important physical property of biomaterials that determines stem cell fate. Guiding stem cell differentiation via stiffness modulation has been considered in tissue engineering. However, the mechanism by which material stiffness regulates stem cell differentiation into the tendon lineage remains controversial. Increasing evidence demonstrates that immune cells interact with implanted biomaterials and regulate stem cell behaviors via paracrine signaling; however, the role of this mechanism in tendon differentiation is not clear. In this study, polydimethylsiloxane (PDMS) substrates with different stiffnesses are developed, and the tenogenic differentiation of mesenchymal stem cells (MSCs) exposed to different stiffnesses and macrophage paracrine signals is investigated. The results reveal that lower stiffnesses facilitates tenogenic differentiation of MSCs, while macrophage paracrine signals at these stiffnesses suppress the differentiation. When exposed to these two stimuli, MSCs still exhibit enhanced tendon differentiation, which is further elucidated by global proteomic analysis. Following subcutaneous implantation in rats for 2 weeks, soft biomaterial induces only low inflammation and promotes tendon-like tissue formation. In conclusion, the study demonstrates that soft, rather than stiff, material has a greater potential to guide tenogenic differentiation of stem cells, which provides comprehensive evidence for optimized bioactive scaffold design in tendon tissue engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
ZCR完成签到,获得积分10
6秒前
踏雪飞鸿完成签到,获得积分10
7秒前
今后应助li采纳,获得10
9秒前
顾城浪子完成签到,获得积分10
9秒前
ZCR发布了新的文献求助10
10秒前
Joey完成签到,获得积分10
14秒前
爆米花应助一棵开花的树采纳,获得10
14秒前
1205114938完成签到,获得积分10
16秒前
20秒前
22秒前
杭采蓝完成签到 ,获得积分10
23秒前
daniel174完成签到,获得积分10
25秒前
英俊的铭应助xiaoyang1986采纳,获得10
26秒前
echo完成签到 ,获得积分10
26秒前
小刘小刘完成签到 ,获得积分10
26秒前
29秒前
wanci应助科研通管家采纳,获得10
32秒前
不安阑悦应助科研通管家采纳,获得10
32秒前
32秒前
凤凰应助科研通管家采纳,获得30
32秒前
gjww应助科研通管家采纳,获得10
32秒前
秋雪瑶应助科研通管家采纳,获得10
32秒前
lalala应助科研通管家采纳,获得10
32秒前
gjww应助科研通管家采纳,获得10
32秒前
dingding完成签到,获得积分20
33秒前
mito完成签到,获得积分10
34秒前
鹏826完成签到 ,获得积分10
39秒前
yzxzdm完成签到 ,获得积分10
39秒前
40秒前
风趣小小完成签到,获得积分10
41秒前
聪明的鹤完成签到 ,获得积分10
42秒前
喵了个咪完成签到 ,获得积分10
44秒前
xinxin完成签到 ,获得积分10
44秒前
taizi发布了新的文献求助10
44秒前
Gang完成签到,获得积分10
45秒前
Noel完成签到,获得积分10
45秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
Glossary of Geology 400
Additive Manufacturing Design and Applications 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2473902
求助须知:如何正确求助?哪些是违规求助? 2138919
关于积分的说明 5451172
捐赠科研通 1862923
什么是DOI,文献DOI怎么找? 926240
版权声明 562817
科研通“疑难数据库(出版商)”最低求助积分说明 495483