Automatic Apple Detection and Counting with AD-YOLO and MR-SORT

分类 计算机科学 人工智能 计算机视觉 情报检索
作者
Xueliang Yang,Yapeng Gao,Mengyu Yin,Haifang Li
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (21): 7012-7012
标识
DOI:10.3390/s24217012
摘要

In the production management of agriculture, accurate fruit counting plays a vital role in the orchard yield estimation and appropriate production decisions. Although recent tracking-by-detection algorithms have emerged as a promising fruit-counting method, they still cannot completely avoid fruit occlusion and light variations in complex orchard environments, and it is difficult to realize automatic and accurate apple counting. In this paper, a video-based multiple-object tracking method, MR-SORT (Multiple Rematching SORT), is proposed based on the improved YOLOv8 and BoT-SORT. First, we propose the AD-YOLO model, which aims to reduce the number of incorrect detections during object tracking. In the YOLOv8s backbone network, an Omni-dimensional Dynamic Convolution (ODConv) module is used to extract local feature information and enhance the model's ability better; a Global Attention Mechanism (GAM) is introduced to improve the detection ability of a foreground object (apple) in the whole image; a Soft Spatial Pyramid Pooling Layer (SSPPL) is designed to reduce the feature information dispersion and increase the sensory field of the network. Then, the improved BoT-SORT algorithm is proposed by fusing the verification mechanism, SURF feature descriptors, and the Vector of Local Aggregate Descriptors (VLAD) algorithm, which can match apples more accurately in adjacent video frames and reduce the probability of ID switching in the tracking process. The results show that the mAP metrics of the proposed AD-YOLO model are 3.1% higher than those of the YOLOv8 model, reaching 96.4%. The improved tracking algorithm has 297 fewer ID switches, which is 35.6% less than the original algorithm. The multiple-object tracking accuracy of the improved algorithm reached 85.6%, and the average counting error was reduced to 0.07. The coefficient of determination R2 between the ground truth and the predicted value reached 0.98. The above metrics show that our method can give more accurate counting results for apples and even other types of fruit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DDDDJ关注了科研通微信公众号
1秒前
Zx完成签到 ,获得积分10
2秒前
ZXD1989完成签到 ,获得积分10
3秒前
4秒前
宿素发布了新的文献求助10
4秒前
大小罐子完成签到,获得积分10
6秒前
ywhys完成签到,获得积分10
6秒前
7秒前
美味鱼干完成签到,获得积分10
7秒前
星辰大海应助郭子采纳,获得10
8秒前
Lyubb完成签到,获得积分10
9秒前
思源应助nwds采纳,获得10
9秒前
奋斗的桐发布了新的文献求助10
10秒前
茨茨喵喵完成签到,获得积分10
10秒前
NexusExplorer应助宿素采纳,获得10
10秒前
BINGOFAN完成签到,获得积分10
10秒前
M3L2完成签到,获得积分10
10秒前
学习啦完成签到,获得积分10
13秒前
科研通AI5应助追寻地坛采纳,获得10
15秒前
一杯奶茶完成签到,获得积分10
16秒前
18秒前
Hwenjing完成签到,获得积分10
19秒前
无限毛豆发布了新的文献求助10
22秒前
YANGNASH完成签到,获得积分10
23秒前
幸福果汁完成签到 ,获得积分10
24秒前
自由的奎发布了新的文献求助10
25秒前
跳跃的惮完成签到,获得积分10
27秒前
flymove完成签到,获得积分10
28秒前
领导范儿应助13采纳,获得10
29秒前
31秒前
AAA完成签到,获得积分10
33秒前
35秒前
fanfan完成签到 ,获得积分10
35秒前
35秒前
王先生完成签到 ,获得积分10
37秒前
meng发布了新的文献求助20
38秒前
ineffable完成签到,获得积分20
39秒前
123完成签到,获得积分10
40秒前
40秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843754
求助须知:如何正确求助?哪些是违规求助? 3386164
关于积分的说明 10543901
捐赠科研通 3106867
什么是DOI,文献DOI怎么找? 1711207
邀请新用户注册赠送积分活动 823978
科研通“疑难数据库(出版商)”最低求助积分说明 774409