Long-term spatiotemporal mapping in lacustrine environment by remote sensing:Review with case study, challenges, and future directions

期限(时间) 遥感 环境科学 环境资源管理 地图学 地理 计算机科学 环境规划 地质学 物理 量子力学
作者
Lai Lai,Yuchen Liu,Yuchao Zhang,Z. Cao,Yuepeng Yin,Xi Chen,Jiale Jin,Shui-mu Wu
出处
期刊:Water Research [Elsevier BV]
卷期号:267: 122457-122457 被引量:2
标识
DOI:10.1016/j.watres.2024.122457
摘要

Satellite remote sensing, unlike traditional ship-based sampling, possess the advantage of revisit capabilities and provides over 40 years of data support for observing lake environments at local, regional, and global scales. In recent years, global freshwater and coastal waters have faced adverse environmental issues, including harmful phytoplankton blooms, eutrophication, and extreme temperatures. To comprehensively address the goal of 'reviewing the past, assessing the present, and predicting the future', research increasingly focuses on developing and producing algorithms and products for long-term and large-scale mapping. This paper provides a comprehensive review of related research, evaluating the current status, shortcomings, and future trends of remote sensing datasets, monitoring targets, technical methods, and data processing platforms. The analysis demonstrated that the long-term spatiotemporal dynamic lake monitoring transition is thriving: (i) evolving from single data sources to satellite collaborative observations to keep a trade-off between temporal and spatial resolutions, (ii) shifting from single research targets to diversified and multidimensional objectives, (iii) progressing from empirical/mechanism models to machine/deep/transfer learning algorithms, (iv) moving from local processing to cloud-based platforms and parallel computing. Future directions include, but are not limited to: (i) establishing a global sampling data-sharing platform, (ii) developing precise atmospheric correction algorithms, (iii) building next-generation ocean color sensors and virtual constellation networks, (iv) introducing Interpretable Machine Learning (IML) and Explainable Artificial Intelligence (XAI) models, (v) integrating cloud computing, big data/model/computer, and Internet of Things (IoT) technologies, (vi) crossing disciplines with earth sciences, hydrology, computer science, and human geography, etc. In summary, this work offers valuable references and insights for academic research and government decision-making, which are crucial for enhancing the long-term tracking of aquatic ecological environment and achieving the Sustainable Development Goals (SDGs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助rmbsLHC采纳,获得10
1秒前
2秒前
3秒前
Tia发布了新的文献求助10
6秒前
丙子哥发布了新的文献求助10
7秒前
在水一方应助孙婉莹采纳,获得10
8秒前
10秒前
Ricky发布了新的文献求助10
11秒前
jxcandice完成签到,获得积分10
12秒前
ding应助LikeX采纳,获得10
12秒前
kkrian完成签到,获得积分10
13秒前
小宋应助mini采纳,获得10
13秒前
姜黎发布了新的文献求助10
15秒前
Tia完成签到,获得积分20
16秒前
16秒前
zhenzheng完成签到 ,获得积分10
17秒前
飞儿随缘发布了新的文献求助10
19秒前
bkagyin应助wyx采纳,获得10
20秒前
21秒前
凉月壹贰完成签到,获得积分20
22秒前
NexusExplorer应助xh采纳,获得10
23秒前
INGH完成签到,获得积分10
24秒前
陈帅发布了新的文献求助10
25秒前
27秒前
Beautieat1完成签到,获得积分10
29秒前
30秒前
善学以致用应助Yi采纳,获得10
31秒前
32秒前
陈帅完成签到,获得积分10
33秒前
口口发布了新的文献求助10
33秒前
xh发布了新的文献求助10
34秒前
Dr.Wei完成签到,获得积分10
36秒前
新威宝贝发布了新的文献求助10
37秒前
我是老大应助Tia采纳,获得10
37秒前
INGH发布了新的文献求助10
37秒前
40秒前
41秒前
Shelby发布了新的文献求助10
44秒前
正直的冰萍完成签到,获得积分20
45秒前
46秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
Effects of Receptive Music Therapy Combined with Virtual Reality on Prevalent Symptoms in Patients with Advanced Cancer 282
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811277
求助须知:如何正确求助?哪些是违规求助? 3355696
关于积分的说明 10377245
捐赠科研通 3072493
什么是DOI,文献DOI怎么找? 1687627
邀请新用户注册赠送积分活动 811691
科研通“疑难数据库(出版商)”最低求助积分说明 766762