A novel approach for apple leaf disease image segmentation in complex scenes based on two-stage DeepLabv3+ with adaptive loss

人工智能 像素 分割 计算机视觉 计算机科学 模式识别(心理学) 数学
作者
Shisong Zhu,Wanli Ma,Jiangwen Lu,Bo Ren,Chunyang Wang,Jianlong Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:204: 107539-107539 被引量:44
标识
DOI:10.1016/j.compag.2022.107539
摘要

In complex environments, overlapping leaves and uneven light can make pixels of leaf edges difficult to identify, resulting in a poor segmentation performance of the target leaf. In addition, the pixel ratio imbalance between the background area and the target area is the main reason that undermines the accuracy of spot extraction. To address these problems, a novel two-stage DeepLabv3+ with adaptive loss is proposed for the segmentation of apple leaf disease images in complex scenes. The proposed adaptive loss adds a modulation factor to the cross-entropy (CE) loss that can reduce the weight of losses generated by easily classified pixels. Therefore, it allows the model to focus more on hard-to-classify pixels during learning, thus improving segmentation accuracy. The novel two-stage model, consisting of Leaf-DeepLabv3+ and Disease-DeepLabv3+, is named LD-DeepLabv3+. In the first stage of the proposed model, Leaf-DeepLabv3+ is employed to extract the leaves from the complex environment. At this stage, the receptive field block (RFB) and the reverse attention (RA) module are introduced to improve the perception ability of the model for different sizes of blades and their edges. Then, the Disease-DeepLabv3+ is designed to segment disease spots from the erased background leaf images in the second stage of the proposed model. In the Disease-DeepLabv3+, the rates of the dilated convolution in atrous spatial pyramid pooling (ASPP) are adjusted to make it more suitable for extracting smaller targets, and the channel attention block (CAB) is introduced to highlight significant spot information and suppress unimportant information. The experimental results show that the proposed method, which combines LD-DeepLabv3+ with the adaptive loss, reaches 98.70% intersection over union (IoU) for leaf segmentation and 86.56% IoU for spot extraction. Compared with the two-stage model DUNet, the proposed method improves the segmentation accuracy of leaves and spots by 0.93% and 4.27%, respectively. Moreover, the total number of parameters and floating points of operations of the proposed method are only 16.96% and 18.25% of those of DUNet, respectively. Hence, the proposed method can provide an effective solution to extract leaves and disease spots in complex environments and has lower computational costs. This makes it suitable for deployment on mobile devices for applications in agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
2秒前
小马甲应助小叶子采纳,获得10
2秒前
樱桃小王子完成签到,获得积分10
2秒前
siqilinwillbephd完成签到,获得积分10
4秒前
孙燕应助CF采纳,获得10
4秒前
5秒前
xiaomu发布了新的文献求助30
5秒前
9秒前
Zhang完成签到,获得积分10
9秒前
英姑应助chenchen978采纳,获得10
10秒前
爆米花应助年轻可愁采纳,获得10
10秒前
lhn发布了新的文献求助10
11秒前
jue完成签到 ,获得积分20
12秒前
丘比特应助神勇的天问采纳,获得10
14秒前
chen完成签到,获得积分10
15秒前
15秒前
急急急发布了新的文献求助10
16秒前
隐形曼青应助jinx采纳,获得10
16秒前
无欲发布了新的文献求助10
19秒前
逍遥完成签到,获得积分10
19秒前
Qimier完成签到 ,获得积分10
19秒前
bkagyin应助科研小白0125采纳,获得10
21秒前
beibei完成签到,获得积分10
22秒前
小豆豆发布了新的文献求助50
22秒前
22秒前
黑白完成签到,获得积分10
22秒前
24秒前
24秒前
25秒前
tuzhifengyin完成签到,获得积分10
27秒前
852应助陈艳林采纳,获得10
28秒前
bible完成签到,获得积分10
29秒前
鸡蛋灌饼完成签到,获得积分10
29秒前
jue关注了科研通微信公众号
30秒前
30秒前
30秒前
jinx发布了新的文献求助10
31秒前
wang发布了新的文献求助30
31秒前
公冶笑白完成签到,获得积分20
32秒前
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4003178
求助须知:如何正确求助?哪些是违规求助? 3542592
关于积分的说明 11284932
捐赠科研通 3279757
什么是DOI,文献DOI怎么找? 1808763
邀请新用户注册赠送积分活动 884882
科研通“疑难数据库(出版商)”最低求助积分说明 810557