LRAD-Net: An Improved Lightweight Network for Building Extraction From Remote Sensing Images

计算机科学 稳健性(进化) 特征提取 分割 解码方法 人工智能 模式识别(心理学) 棱锥(几何) 航空影像 块(置换群论) 图像分割 联营 数据挖掘 遥感 计算机视觉 图像(数学) 算法 物理 地质学 光学 基因 生物化学 化学 数学 几何学
作者
Jiabin Liu,Huaigang Huang,Hanxiao Sun,Zhifeng Wu,Renbo Luo
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 675-687 被引量:10
标识
DOI:10.1109/jstars.2022.3229460
摘要

The building extraction method of remote sensing images that uses deep learning algorithms can solve the problems of low efficiency and poor effect of traditional methods during feature extraction. Although some semantic segmentation networks proposed recently can achieve good segmentation performance in extracting buildings, their huge parameters and large amount of calculation lead to great obstacles in practical application. Therefore, we propose a lightweight network (named LRAD-Net) for building extraction from remote sensing images. LRAD-Net can be divided into two stages: encoding and decoding. In the encoding stage, the lightweight RegNet network with 600 million flop (600 MF) is finally selected as our feature extraction backbone net though lots of experimental comparisons. Then, a multiscale depthwise separable atrous spatial pyramid pooling structure is proposed to extract more comprehensive and important details of buildings. In the decoding stage, the squeeze-and-excitation attention mechanism is applied innovatively to redistribute the channel weights before fusing feature maps with low-level details and high-level semantics, thus can enrich the local and global information of the buildings. What's more, a lightweight residual block with polarized self-attention is proposed, it can incorporate features extracted from the space of maps and different channels with a small number of parameters, and improve the accuracy of recovering building boundary. In order to verify the effectiveness and robustness of proposed LRAD-Net, we conduct experiments on a self-annotated UAV dataset with higher resolution and three public datasets (the WHU aerial image dataset, the WHU satellite image dataset and the Inria aerial image dataset). Compared with several representative networks, LRAD-Net can extract more details of building, and has smaller number of parameters, faster computing speed, stronger generalization ability, which can improve the training speed of the network without affecting the building extraction effect and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
orixero应助亢kxh采纳,获得10
3秒前
Owen应助健忘雁荷采纳,获得10
6秒前
Annabelame发布了新的文献求助10
7秒前
情怀应助小羊睡饱了采纳,获得10
7秒前
商陆完成签到,获得积分20
8秒前
8秒前
8秒前
NgiNgu完成签到 ,获得积分10
9秒前
everglow发布了新的文献求助10
9秒前
11秒前
11秒前
13秒前
司马三问完成签到,获得积分20
13秒前
quietlife发布了新的文献求助10
14秒前
wonderful发布了新的文献求助10
14秒前
16秒前
17秒前
上官若男应助周小鱼采纳,获得10
17秒前
18秒前
健忘雁荷发布了新的文献求助10
18秒前
19秒前
满眼星辰发布了新的文献求助10
19秒前
笨笨的完成签到 ,获得积分10
22秒前
23秒前
安详芝麻发布了新的文献求助10
26秒前
袁庚完成签到 ,获得积分10
27秒前
28秒前
Billy应助科研通管家采纳,获得10
28秒前
Alex应助科研通管家采纳,获得20
28秒前
quietlife完成签到,获得积分10
28秒前
丘比特应助科研通管家采纳,获得20
28秒前
花成花发布了新的文献求助10
29秒前
和谐的寄凡完成签到,获得积分10
30秒前
新念发布了新的文献求助20
31秒前
琳琳完成签到,获得积分10
31秒前
32秒前
33秒前
qazx完成签到 ,获得积分10
34秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831507
求助须知:如何正确求助?哪些是违规求助? 3373721
关于积分的说明 10481076
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702910
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771307