State estimation of a lithium-ion battery based on multi-feature indicators of ultrasonic guided waves

超声波传感器 特征(语言学) 电池(电) 荷电状态 计算机科学 健康状况 声学 锂离子电池 工程类 物理 功率(物理) 语言学 量子力学 哲学
作者
Xiaoyu Li,Wen Hua,Chuxin Wu,Shanpu Zheng,Yong Tian,Jindong Tian
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:56: 106113-106113 被引量:30
标识
DOI:10.1016/j.est.2022.106113
摘要

Ultrasonic non-destructive testing technology has been applied to battery state estimation applications to ensure the safety of the energy storage system. However, the accuracy and robustness of battery state estimation should be improved. In this paper, the state estimation of a lithium-ion battery based on multi-feature indicators of ultrasonic guided waves is studied. Piezoelectric ceramic ultrasonic probes with a fixed angle are used as the transducers. Eleven feature indicators of ultrasonic signals are analyzed. The appropriate feature indicators for battery state estimation are determined based on sensitivity analysis and correlation analysis. Considering the frequency response characteristics of the probe and the battery, the multi-frequency response characteristics of the battery are analyzed. Finally, seven feature indicators with multi-frequency excitation are selected. Subsequently, an adaptive machine learning model is designed to estimate the battery state. Based on the experimental results, the root mean square error (RMSE) of the battery state of charge (SOC) estimation result is less than 2.36 %. The applicability of the proposed method is verified by battery fully charged and non-fully charged experiments. Meanwhile, the method can quickly diagnose the side reaction process under abuse conditions such as overcharge and overdischarge, which provides a new method for non-destructive battery state evaluation. • Eleven ultrasonic feature parameters are analyzed for battery state estimation. • The multi-frequency ultrasonic guided waves on the battery are analyzed. • An adaptive fusion machine learning model is designed for state estimation. • The method is useful for non-destructive battery state evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
长孙凌柏完成签到,获得积分10
2秒前
卡卡西应助David采纳,获得20
2秒前
清秀不言完成签到 ,获得积分10
2秒前
2秒前
3秒前
SUN完成签到,获得积分10
3秒前
4秒前
F1t272发布了新的文献求助20
5秒前
shuke发布了新的文献求助20
6秒前
6秒前
苹果冬莲完成签到,获得积分10
7秒前
Doge的羊驼发布了新的文献求助10
7秒前
mridng发布了新的文献求助10
8秒前
8秒前
乐乐应助HaHa采纳,获得10
9秒前
科研通AI5应助芒果采纳,获得10
9秒前
9秒前
10秒前
11发布了新的文献求助10
11秒前
seeyou完成签到 ,获得积分10
11秒前
12秒前
12秒前
失眠醉易应助Khr1stINK采纳,获得20
12秒前
张小鹃完成签到,获得积分10
13秒前
Reachu.Chan完成签到,获得积分10
13秒前
铁手无情完成签到,获得积分10
14秒前
15秒前
清脆语海发布了新的文献求助10
15秒前
科yan完成签到,获得积分10
15秒前
情怀应助Lucky采纳,获得10
16秒前
SOESAN完成签到,获得积分10
16秒前
花小研发布了新的文献求助20
16秒前
chenzhezhixp发布了新的文献求助30
17秒前
Liy关闭了Liy文献求助
20秒前
20秒前
21秒前
深情安青应助文光采纳,获得10
21秒前
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797313
求助须知:如何正确求助?哪些是违规求助? 3342739
关于积分的说明 10312854
捐赠科研通 3059478
什么是DOI,文献DOI怎么找? 1678895
邀请新用户注册赠送积分活动 806277
科研通“疑难数据库(出版商)”最低求助积分说明 763043