Improved broad learning system for machinery intelligent fault diagnosis with increasing fault samples, fault modes, and running conditions

断层(地质) 终身学习 方位(导航) 计算机科学 人工智能 机器学习 故障检测与隔离 可靠性工程 工程类 心理学 教育学 地质学 地震学 执行机构
作者
Yang Fu,Hongrui Cao,Xuefeng Chen,Jianming Ding
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:136: 400-416 被引量:11
标识
DOI:10.1016/j.isatra.2022.10.014
摘要

Intelligent fault diagnosis (IFD) plays an indispensable role in protecting machinery from catastrophic accidents. Existing IFD methods are mainly developed in the framework of one-time learning. Therefore, they work under the hypothesis of complete dataset. Nevertheless, it is unrealistic to gain the complete dataset of machinery faults at once. More practically, new data will be progressively acquired over time. Therefore, it is urgently required to develop the incremental learning (IL) capabilities for IFD models to learn new knowledge continually from new data. For this purpose, this study proposes an improved broad learning system (IBLS) for lifelong learning IFD. Firstly, the initial IBLS is constructed based on the original broad learning system (BLS). Then, the IL capabilities of the IBLS are developed for three scenarios: increasing fault samples, increasing fault modes, and increasing running conditions. Based on these IL capabilities, the IBLS can be progressively updated to learn more and more diagnosis functions. Finally, the effectiveness of the proposed IBLS is verified using three experiments of high-speed train bearing, disc component, and Case Western Reserve University bearing. The results show that the IBLS is capable of learning continually new knowledge from new data. Besides, the diagnosis accuracy of the IBLS is 12.45%, 7.84%, and 5.10% higher than that of the original BLS in the three case studies. The satisfying results prove that the proposed IBLS is a useful method to solve the lifelong learning IFD problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang关注了科研通微信公众号
刚刚
jjh完成签到,获得积分10
刚刚
w_yF发布了新的文献求助10
刚刚
AmyHu发布了新的文献求助10
1秒前
Eason完成签到 ,获得积分10
1秒前
JamesPei应助不安映寒采纳,获得10
1秒前
小蘑菇应助刘涵采纳,获得10
2秒前
Wdw2236发布了新的文献求助10
2秒前
Criminology34应助自由的冰蓝采纳,获得10
2秒前
加油干完成签到,获得积分10
3秒前
soufle完成签到,获得积分10
3秒前
xxxx发布了新的文献求助10
3秒前
油炸小麻花完成签到,获得积分10
3秒前
小马甲应助卓头OvQ采纳,获得10
3秒前
米六发布了新的文献求助10
4秒前
4秒前
刘畅完成签到,获得积分10
4秒前
scl发布了新的文献求助10
4秒前
5秒前
随风完成签到,获得积分10
5秒前
JamesPei应助坚定晓兰采纳,获得10
6秒前
6秒前
medmh完成签到,获得积分10
7秒前
Adam完成签到 ,获得积分10
7秒前
Wdw2236完成签到,获得积分10
8秒前
唠叨的若冰完成签到,获得积分10
8秒前
wanci应助陶瓷人采纳,获得10
9秒前
科研通AI6应助xrrrr采纳,获得10
9秒前
10秒前
xrrrr应助美好的鸽子采纳,获得10
10秒前
10秒前
10秒前
zho关闭了zho文献求助
11秒前
刘涵完成签到,获得积分10
11秒前
杜乔发布了新的文献求助10
11秒前
壮壮发布了新的文献求助10
11秒前
科研通AI6应助shineedou采纳,获得10
12秒前
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258336
求助须知:如何正确求助?哪些是违规求助? 4420295
关于积分的说明 13759856
捐赠科研通 4293832
什么是DOI,文献DOI怎么找? 2356178
邀请新用户注册赠送积分活动 1352503
关于科研通互助平台的介绍 1313290