Spatial-Temporal Dynamic Hypergraph Information Bottleneck for Brain Network Classification

计算机科学 瓶颈 超图 信息瓶颈法 图形 网络拓扑 人工智能 理论计算机科学 拓扑(电路) 数据挖掘 机器学习 聚类分析 数学 计算机网络 嵌入式系统 离散数学 组合数学
作者
Changxu Dong,Dengdi Sun
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:34 (10) 被引量:5
标识
DOI:10.1142/s0129065724500539
摘要

Recently, Graph Neural Networks (GNNs) have gained widespread application in automatic brain network classification tasks, owing to their ability to directly capture crucial information in non-Euclidean structures. However, two primary challenges persist in this domain. First, within the realm of clinical neuro-medicine, signals from cerebral regions are inevitably contaminated with noise stemming from physiological or external factors. The construction of brain networks heavily relies on set thresholds and feature information within brain regions, making it susceptible to the incorporation of such noises into the brain topology. Additionally, the static nature of the artificially constructed brain network's adjacent structure restricts real-time changes in brain topology. Second, mainstream GNN-based approaches tend to focus solely on capturing information interactions of nearest neighbor nodes, overlooking high-order topology features. In response to these challenges, we propose an adaptive unsupervised Spatial-Temporal Dynamic Hypergraph Information Bottleneck (ST-DHIB) framework for dynamically optimizing brain networks. Specifically, adopting an information theory perspective, Graph Information Bottleneck (GIB) is employed for purifying graph structure, and dynamically updating the processed input brain signals. From a graph theory standpoint, we utilize the designed Hypergraph Neural Network (HGNN) and Bi-LSTM to capture higher-order spatial-temporal context associations among brain channels. Comprehensive patient-specific and cross-patient experiments have been conducted on two available datasets. The results demonstrate the advancement and generalization of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助30
刚刚
4秒前
5秒前
5秒前
无糖完成签到,获得积分20
5秒前
ZhouYW完成签到,获得积分0
7秒前
含糊的尔槐应助FODCOC采纳,获得200
8秒前
choshuenco完成签到,获得积分10
8秒前
Lmmcer完成签到,获得积分10
9秒前
星辰大海应助Awesome采纳,获得50
10秒前
zou完成签到 ,获得积分10
11秒前
13秒前
搬砖完成签到,获得积分10
16秒前
学医自救完成签到,获得积分10
17秒前
20秒前
nancy93228应助秀丽的西牛采纳,获得10
20秒前
余樱完成签到 ,获得积分10
25秒前
haojinxiu发布了新的文献求助10
28秒前
31秒前
winifred完成签到 ,获得积分10
32秒前
35秒前
36秒前
37秒前
踢球的孩子完成签到 ,获得积分10
38秒前
firewood完成签到,获得积分10
42秒前
oyc发布了新的文献求助10
43秒前
大福老师发布了新的文献求助10
43秒前
44秒前
i_jueloa完成签到,获得积分10
47秒前
herococa应助zou采纳,获得10
47秒前
48秒前
49秒前
oyc完成签到,获得积分10
51秒前
斯文败类应助喻盐采纳,获得10
53秒前
54秒前
55秒前
田野的小家庭完成签到 ,获得积分10
56秒前
鸣笛应助科研通管家采纳,获得20
57秒前
震甫应助科研通管家采纳,获得10
57秒前
孙燕应助科研通管家采纳,获得10
57秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942399
求助须知:如何正确求助?哪些是违规求助? 3487682
关于积分的说明 11044739
捐赠科研通 3218082
什么是DOI,文献DOI怎么找? 1778763
邀请新用户注册赠送积分活动 864413
科研通“疑难数据库(出版商)”最低求助积分说明 799438