清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An enhanced sparrow search swarm optimizer via multi-strategies for high-dimensional optimization problems

计算机科学 群体行为 数学优化 元启发式 麻雀 粒子群优化 算法 人工智能 数学 生态学 生物
作者
Shuang Liang,Minghao Yin,Geng Sun,Jiahui Li,Hongjuan Li,Qi Lang
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:88: 101603-101603 被引量:1
标识
DOI:10.1016/j.swevo.2024.101603
摘要

With the development of science and technology, high-dimensional global optimization problems have become increasingly prevalent for scientific research and engineering, such as gene recognition, vehicle routing, job scheduling, and network topology. These problems are typically characterized by enormous and complex search spaces and numerous local minima, making it challenging to find the global optimal solution with limited computing resources. This paper introduces an enhanced sparrow search swarm optimizer (ESSSO) based on a bio-mimetic method. The ESSSO employs an adaptive sinusoidal walk strategy based on the von Mises distribution, a learning strategy utilizing roulette wheel selection, a two-stage evolution strategy, and a selection mutation strategy to address these issues. The proposed sinusoidal walk strategy, grounded in the von Mises distribution, supports a balanced evolutionary search. This mechanism disperses the individuals in a swarm in various directions based on a circular normal distribution. It then leads the search and adaptively adjusts their step sizes according to the size of the search domain during each generation of evolution. The learning strategy, based on roulette wheel selection, enhances the diversity of the population and improves the global search capability of the algorithm during the initial iterations. The two-stage evolution strategy involves a sine-learning mechanism based on the von Mises distribution and an adaptive mutation mechanism. The former is designed to boost the convergence speed of ESSSO, while the latter prevents ESSSO from getting trapped in a local optimum. Additionally, the selection mutation strategy further enhances convergence speed while maintaining population diversity. These strategies promote exploration in the early stages of evolution and exploitation in the later stages, enabling a well-balanced search for optimal solutions. We conducted comprehensive experiments two standard benchmark sets (i.e., CEC2010 and CEC2013), antenna array optimization, feature selection, and four engineering design problems. The results indicate that ESSSO outperforms ten comparison algorithms, especially in scenarios with smaller population sizes. This confirms its effectiveness in high-dimensional global optimization tasks and demonstrates that it can achieve better results with less computational resource consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛毛弟完成签到 ,获得积分10
6秒前
chcmy完成签到 ,获得积分0
17秒前
肖果完成签到 ,获得积分10
18秒前
30秒前
隐形曼青应助科研通管家采纳,获得10
30秒前
Dong完成签到 ,获得积分10
33秒前
wjx完成签到 ,获得积分10
1分钟前
噼里啪啦完成签到,获得积分10
1分钟前
digger2023完成签到 ,获得积分10
1分钟前
zzgpku完成签到,获得积分0
1分钟前
四叶草完成签到 ,获得积分10
1分钟前
1分钟前
003完成签到,获得积分10
1分钟前
fogsea完成签到,获得积分0
1分钟前
yy完成签到 ,获得积分10
1分钟前
666完成签到 ,获得积分10
1分钟前
wenhuanwenxian完成签到 ,获得积分10
1分钟前
jyy应助皮皮采纳,获得10
1分钟前
002完成签到,获得积分10
2分钟前
GankhuyagJavzan完成签到,获得积分10
2分钟前
科研通AI2S应助予秋采纳,获得10
2分钟前
庄怀逸完成签到 ,获得积分10
3分钟前
戚雅柔完成签到 ,获得积分10
3分钟前
AiQi完成签到 ,获得积分10
3分钟前
hdc12138完成签到,获得积分10
3分钟前
allrubbish完成签到,获得积分10
3分钟前
可玩性完成签到 ,获得积分10
3分钟前
甜乎贝贝完成签到 ,获得积分10
4分钟前
深情安青应助风华正茂采纳,获得10
4分钟前
小蚂蚁完成签到 ,获得积分10
4分钟前
Kelsey完成签到 ,获得积分10
4分钟前
晴天完成签到 ,获得积分10
4分钟前
土拨鼠完成签到 ,获得积分10
4分钟前
湖以完成签到 ,获得积分10
4分钟前
蒲蒲完成签到 ,获得积分10
4分钟前
FFFFFF完成签到 ,获得积分10
4分钟前
眯眯眼的安雁完成签到 ,获得积分10
4分钟前
1437594843完成签到 ,获得积分10
4分钟前
心静自然好完成签到 ,获得积分10
5分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
5分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340665
关于积分的说明 10300948
捐赠科研通 3057168
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626