SPICER: Self‐supervised learning for MRI with automatic coil sensitivity estimation and reconstruction

计算机科学 人工智能 卷积神经网络 基本事实 灵敏度(控制系统) 机器学习 模式识别(心理学) 人工神经网络 电磁线圈 电气工程 电子工程 工程类
作者
Yuyang Hu,Weijie Gan,Chunwei Ying,Tongyao Wang,Cihat Eldeniz,Jiaming Liu,Yasheng Chen,Hongyu An,Ulugbek S. Kamilov
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:92 (3): 1048-1063 被引量:4
标识
DOI:10.1002/mrm.30121
摘要

Abstract Purpose To introduce a novel deep model‐based architecture (DMBA), SPICER, that uses pairs of noisy and undersampled k‐space measurements of the same object to jointly train a model for MRI reconstruction and automatic coil sensitivity estimation. Methods SPICER consists of two modules to simultaneously reconstructs accurate MR images and estimates high‐quality coil sensitivity maps (CSMs). The first module, CSM estimation module, uses a convolutional neural network (CNN) to estimate CSMs from the raw measurements. The second module, DMBA‐based MRI reconstruction module, forms reconstructed images from the input measurements and the estimated CSMs using both the physical measurement model and learned CNN prior. With the benefit of our self‐supervised learning strategy, SPICER can be efficiently trained without any fully sampled reference data. Results We validate SPICER on both open‐access datasets and experimentally collected data, showing that it can achieve state‐of‐the‐art performance in highly accelerated data acquisition settings (up to ). Our results also highlight the importance of different modules of SPICER—including the DMBA, the CSM estimation, and the SPICER training loss—on the final performance of the method. Moreover, SPICER can estimate better CSMs than pre‐estimation methods especially when the ACS data is limited. Conclusion Despite being trained on noisy undersampled data, SPICER can reconstruct high‐quality images and CSMs in highly undersampled settings, which outperforms other self‐supervised learning methods and matches the performance of the well‐known E2E‐VarNet trained on fully sampled ground‐truth data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一只小可爱完成签到,获得积分10
1秒前
1秒前
9527完成签到,获得积分10
1秒前
maox1aoxin应助科研通管家采纳,获得30
1秒前
掌心化雪完成签到,获得积分10
1秒前
长情诗蕾应助科研通管家采纳,获得20
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
boss发布了新的文献求助100
2秒前
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
2秒前
kkj完成签到,获得积分10
2秒前
iNk应助科研通管家采纳,获得10
2秒前
iNk应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得20
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
3秒前
SXYYXS完成签到 ,获得积分10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得50
4秒前
snow完成签到 ,获得积分10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
小李发布了新的文献求助10
4秒前
ssm发布了新的文献求助20
5秒前
慕青应助332535采纳,获得10
5秒前
星星完成签到,获得积分10
5秒前
科研皇完成签到,获得积分10
5秒前
yygg发布了新的文献求助10
6秒前
Jasper应助kawaisansa采纳,获得10
6秒前
苏su发布了新的文献求助10
6秒前
猪猪hero应助追寻电脑采纳,获得10
6秒前
赫连立果应助天道酬勤采纳,获得10
7秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816404
求助须知:如何正确求助?哪些是违规求助? 3359885
关于积分的说明 10405540
捐赠科研通 3077920
什么是DOI,文献DOI怎么找? 1690402
邀请新用户注册赠送积分活动 813770
科研通“疑难数据库(出版商)”最低求助积分说明 767845