What happens next? Combining enhanced multilevel script learning and dual fusion strategies for script event prediction

计算机科学 人工智能 事件(粒子物理) 机器学习 背景(考古学) 脚本语言 人工神经网络 数据挖掘 古生物学 物理 量子力学 生物 操作系统
作者
Pengpeng Zhou,Bin Wu,Caiyong Wang,Hao Peng,Juwei Yue,Song Xiao
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (11): 10001-10040 被引量:2
标识
DOI:10.1002/int.23025
摘要

Script event prediction (SEP), aiming at predicting next event from context event sequences (i.e., scripts), has played an important role in many real-world applications such as government decision-making. While most of the existing research only depend on the top-level event prediction, they ignore the influence of other bottom levels or other relationship modeling manners. In this paper, we focus on the problem of SEP via multilevel script learning where the goal of is to explore a multistage, multiprediction and multilevel information fusion model for SEP. This is challenging in (1) simultaneously modeling of the multilevel event relationship semantic information and (2) effectively designing multilevel information fusion strategies. In this paper, we propose a new script event prediction model based on Enhanced Multilevel script learning and Dual Fusion strategies, named EMDF-Net. Specifically, EMDF-Net designs the multilevel (event/chain/segment level) script learning to model both temporal and casual information as well as the rich structural relevance via neural stacking of self-attention mechanism and graph neural networks. Then it proposes dual fusion strategies to fully integrate different-level information by nonlinear feature composition and weighted score fusion. Finally, a deep supervision strategy is utilized to end-to-end train the whole model and provide a good initialization for information fusion. Experimental results on the popular NYT corpus demonstrate the effectiveness and superiority of EMDF-Net.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
TZrowton发布了新的文献求助10
1秒前
小蘑菇应助就将计就计采纳,获得10
2秒前
圆圈完成签到 ,获得积分10
2秒前
柳柳完成签到,获得积分10
3秒前
66发布了新的文献求助10
3秒前
潇洒的如松完成签到,获得积分10
4秒前
Lucifer完成签到,获得积分10
5秒前
香丿完成签到 ,获得积分10
6秒前
完美世界应助GG采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
脑洞疼应助777采纳,获得10
7秒前
勤耕苦读完成签到,获得积分10
8秒前
tutman完成签到,获得积分20
9秒前
Lily发布了新的文献求助10
10秒前
10秒前
冰雪物语完成签到,获得积分10
11秒前
阿曼尼完成签到 ,获得积分10
11秒前
12秒前
隐形曼青应助66采纳,获得10
13秒前
14秒前
15秒前
Meteor636发布了新的文献求助10
16秒前
踏实数据线完成签到 ,获得积分10
17秒前
19秒前
19秒前
20秒前
20秒前
freshabc完成签到,获得积分10
20秒前
emma完成签到 ,获得积分10
21秒前
lj完成签到,获得积分10
21秒前
qwer完成签到 ,获得积分10
22秒前
slience发布了新的文献求助10
24秒前
谦让安双完成签到,获得积分10
25秒前
tutman发布了新的文献求助30
25秒前
26秒前
芋头读文献完成签到,获得积分10
26秒前
殿下小王子完成签到,获得积分20
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789767
求助须知:如何正确求助?哪些是违规求助? 5723251
关于积分的说明 15475510
捐赠科研通 4917557
什么是DOI,文献DOI怎么找? 2647071
邀请新用户注册赠送积分活动 1594728
关于科研通互助平台的介绍 1549205