High‐throughput sequencing revealed low‐efficacy genome editing using Cas9 RNPs electroporation and single‐celled microinjection provided an alternative to deliver CRISPR reagents into Euglena gracilis

生物 清脆的 纤细眼虫 基因组编辑 Cas9 电穿孔 引导RNA 微量注射 计算生物学 细胞生物学 遗传学 基因 叶绿体
作者
Zhenfan Chen,Jiayi Zhu,Zixi Chen,Ming Du,Rao Yao,Wen Fu,Anping Lei,Jiangxin Wang
出处
期刊:Plant Biotechnology Journal [Wiley]
卷期号:20 (11): 2048-2050 被引量:3
标识
DOI:10.1111/pbi.13915
摘要

The genus Euglena contains more than 1000 species of single-celled flagellated microorganisms with both plant and animal characteristics. As a model organism, E. gracilis has been studied well to address fundamental questions in chloroplast development and photosynthesis, with implications in physiology, biochemistry and cell biology (Schwartzbach and Shigeoka, 2017). However, research in bioengineering and biotechnology in Euglena, especially using genome editing, remains insufficient (Figure 1a). Nomura et al. (2019) reported successful CRISPR/Cas9-mediated genome editing in Euglena using electroporation of Cas9 ribonucleoproteins (RNPs) targeting EgGSL2 and obtained mutant rates of approximately 70–90% based on morphology and amplicon-sequencing (Nomura et al. 2019). The protocol for implementing the E. gracilis CRISPR experiments was also described in further detail and published (Nomura et al., 2020). To date, these are the only research articles related to CRISPR genome editing of E. gracilis. Since their publication, no other successful case or report has been published by other groups, including ours. In this study, we repeated the CRISPR genome editing experiments on E. gracilis (Nomura et al., 2019, 2020) and assessed their efficiency by high-throughput sequencing. Further, sgRNA targeting the E. gracilis crtP1 gene for phytoene desaturase (PDS) was designed as a reference (Method S1). The EG300 experimental procedures and parameters strictly followed the protocol described by Nomura et al. (2020) (Figure 1c). Moreover, E. gracilis protoplast-like cells (Plas) treated with proteinase K were also used with extended voltage parameters from 150 to 600 V using two types of electroporation devices, NEPA21 and Bio-Rad Xcell (Figure 1c). Additional details of the process are described in Method S1. The result showed that the CRISPR-RNPs system worked efficiently to induce enzymatic cleavage of the partial EgGSL2 gene in vitro (Figure 1b). T7 Endonuclease I (T7E I) assays of three EG300 replications indicated their low editing efficiency from ‘target1’ on the partial EgGSL2 by electroporation (Figure 1d). Further, high-throughput sequencing of the ‘target1’ amplicons was performed using the Illumina NovaSeq 6000 platform. After data control, sequences were aligned and operational taxonomic units (OTUs) were clustered (FLASH v1.2.11 and USEARCH v10.0.240); three OTUs were found to be clustered in most high-quality sequences, which represented wild type, mutant1 and mutant2 (Figure 1e) (accessible data set in China National GeneBank (CNGB); accession no.: CNP0002995). The available sequences were obtained ranging from 29,541 to 353,307 in eight samples. However, only one sample, EG450, revealed mutant sequences with the mutant1 (0.81%) and mutant2 (0.17%), respectively (Figure 1f). The results showed that CRISPR genome editing of E. gracilis targeting the EgGSL2 by electroporation was successful but had very low efficiency. The efficiency of EG300 and other samples except EG450 was 0% (Figure 1f). With the crtP1 gene, eight mutant OTUs were obtained with an efficiency rate of approximately 3% in total (accessible data set in CNGB; accession no.: CNP0003142) (Figure S1). These results indicate that the delivery of RNPs into E. gracilis cells by electroporation is difficult. Microinjection is a physical method to deliver a small volume of substances into cells at the appropriate location, such as the cytoplasm or nucleus (Zhang and Yu, 2008). It is a visible and real-time traceable method that has been widely used in zebrafish embryos and mouse zygotes because of its high efficiency and low lethality (Gordon et al., 1980; Yuan and Sun, 2009). However, the application of microinjection to microalgae, although reported, is very rare (Nichols and Rikmenspoel, 1978), especially if the cell size is less than 100 μm. Here, we present a microinjection method to deliver exogenous materials into E. gracilis cells. For example, the dihydrochloride (DAPI) stain was successfully injected into E. gracilis cells using TransferMan 4r and FemtoJet 4i (Eppendorf, Germany), and blue fluorescence was observed in the nuclear region at the appropriate excitation/emission wavelengths (364 nm/454 nm) under a DMi3000B epifluorescence microscope (Leica, Germany) (Figure 1g). For genome editing E. gracilis, the sgRNA targeting the crtP1 gene for PDS and sgRNA of target1 on the EgGSL2 gene were used. In the crtP1 gene group, six cells among 100 injected cells survived, and each clone was sequenced to verify specific mutation. According to the DNA sequencing results, one clone showed precise genome editing on the crtP1 gene. The cytosine base was deleted at 295 in the partial DNA sequence of the crtP1 gene. The colour differences between the WT and crtP1-mutant were evident under the same cell density at 2.4 × 106 cells/ml (Figure 1h). The efficiency of genome editing was as high as 16.7% based on the surviving cells, whereas 1.0% was calculated based on the number of processed cells. The crtP1 mutant obtained using CRISPR technology coupled with microinjection was maintained even after repeated cultivation for a year. However, no mutant could be obtained in the EgGSL2 gene group, even though twelve clones survived. Microinjection is not a newly emerging technique but rather an advanced and sophisticated technique, primarily when performed on cells smaller than 20 μm (Chen et al., 2022). E. gracilis presents sphere-shaped cells smaller than 20 μm with a flexible pellicle, which hinders manipulation by microinjection. The size of the open tip of the injection pipette should be no more than 500 nm, and tips ranging from 50 to 100 nm are suitable to reduce cell mortality. The injection pressure varies between 100 and 2500 hPa depending on the specific circumstances. Several industrial microalgae cells are tiny with thick cell walls and movability. This may explain why the application of microinjection to microalgae compared with mammalian cells or zygotes is rare. This study represents the first successful report of a microinjection method for delivering CRISPR/Cas9 RNPs into microalgal cells. In summary, we repeated the experiment parameters from Nomura et al. (2020), and obtained suboptimal results, with a maximum editing efficiency of 0.98% by electroporation. Moreover, we conducted CRISPR/Cas9-mediated genome editing of E. gracilis and successfully knocked out the crtP1 gene by microinjection with relatively high efficiency (16.7%). The generated stable crtP1 mutant can be a good candidate for studying carotenoid metabolism in E. gracilis. To the best of our knowledge, this is the first application of microinjection to genome editing in microalgae. Overall, we demonstrate that microinjection-based single-celled manipulation has potential exogenous material delivery to facilitate the bioengineering and biotechnology of microalgae. We thank the Instrument Analysis Center of Shenzhen University. This work was partially supported by China's National Key R&D Programs (2018YFA0902500; 2020YFA0908703; and 2021YFA0910800) and the National Natural Science Foundation of China (41876188). The authors declare no conflicts of interest. ZC and JW conceived and designed the experiments. JZ, ZC, MD, RY and WF helped to perform experiments. AL and JW helped revise the manuscript. All authors read and approved the final manuscript. Figure S1 Mutant types of the sequence targeted on the crtP1 gene after electroporation, determined by high-throughput sequencing Method S1. Methods for Cas9 RNPs electroporation and single-celled microinjection on E. gracilis Movie S1 Short movie of single-celled microinjection on E. gracilis Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小朋友王致和完成签到,获得积分10
3秒前
3秒前
Li发布了新的文献求助10
3秒前
5秒前
李健应助斯文白白采纳,获得10
5秒前
句小点发布了新的文献求助30
6秒前
7秒前
好久不见发布了新的文献求助10
7秒前
8秒前
快乐小袁发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
Aria发布了新的文献求助10
10秒前
美男发布了新的文献求助20
10秒前
11秒前
Zayne完成签到,获得积分10
13秒前
王小西发布了新的文献求助10
14秒前
1213发布了新的文献求助30
14秒前
清云发布了新的文献求助10
14秒前
虚拟龙猫完成签到,获得积分10
16秒前
Panda完成签到,获得积分10
17秒前
科研通AI5应助好久不见采纳,获得10
18秒前
冬野完成签到,获得积分10
19秒前
Aria完成签到,获得积分20
19秒前
Jasper应助高超采纳,获得30
19秒前
Julia完成签到 ,获得积分10
20秒前
星星轨迹发布了新的文献求助20
21秒前
CipherSage应助墨尔根戴青采纳,获得10
21秒前
20231125完成签到,获得积分10
22秒前
仁爱的元芹完成签到,获得积分10
23秒前
24秒前
欣喜冰珍完成签到,获得积分10
29秒前
Hyperion完成签到,获得积分10
31秒前
HR112应助arsenal采纳,获得10
32秒前
33秒前
叶子完成签到,获得积分10
36秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Pteromalidae 600
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842830
求助须知:如何正确求助?哪些是违规求助? 3384827
关于积分的说明 10537714
捐赠科研通 3105396
什么是DOI,文献DOI怎么找? 1710290
邀请新用户注册赠送积分活动 823577
科研通“疑难数据库(出版商)”最低求助积分说明 774149