Addressing Class Imbalance in Aeroengine Fault Detection

重采样 计算机科学 故障检测与隔离 分类器(UML) 机器学习 人工智能 执行机构
作者
Amadi Gabriel Udu,Andrea Lecchini‐Visintini,Maryam Khaksar Ghalati,Hongbiao Dong
标识
DOI:10.1109/icmla58977.2023.00159
摘要

Data-driven approach to fault detection in aeroengine has received considerable attention owing to the availability of engine sensor information for locating and classifying faults. In building models for aeroengine fault detection, class imbalance is a prominent issue. This is due to the fewer number of faults from operational flights and the cost of acquiring them. Notable resampling techniques have been proposed in addressing this class imbalance dilemma. The process involves small incremental iteration of resampling ratios (i.e., the ratio of the number of samples in the minority class over that of the majority class) on a machine learning classifier in a broad search-space, until an acceptable performance is reached. Finding the ideal resampling ratio that guarantees an optimal model performance is particularly necessary in cases where the class samples are distributed in close neighbourhood. However, the process incurs considerable resource expense. This study undertakes an investigation into resampling techniques for tackling class imbalance in aeroengine fault detection. Four ensemble tree learners were considered, while examining the influence of different resampling ratios on the model performance. In determining the best resampling ratio, we propose a lightweight, two-step approach that iteratively locates the search-space that guarantees the optimal model performance. The experimental findings showed a decrease of up to 83.5% in the computational cost in determining the resampling ratio, along with a notable improvement of up to 5.5% in model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
侯谋完成签到,获得积分10
刚刚
刚刚
青秋鱼罐头完成签到,获得积分10
1秒前
holly发布了新的文献求助10
1秒前
少十七完成签到,获得积分10
2秒前
半糖可乐发布了新的文献求助10
2秒前
Raye发布了新的文献求助10
2秒前
个性的冰夏完成签到,获得积分10
3秒前
3秒前
cherish发布了新的文献求助10
4秒前
机灵芷文完成签到,获得积分10
4秒前
4秒前
柚桔发布了新的文献求助10
4秒前
ckyyds发布了新的文献求助10
6秒前
CipherSage应助半糖可乐采纳,获得10
7秒前
雪鸮发布了新的文献求助10
7秒前
粘粘发布了新的文献求助10
8秒前
8秒前
细心的思天完成签到,获得积分10
8秒前
情怀应助勤劳的音响采纳,获得10
8秒前
111发布了新的文献求助10
8秒前
xiangpimei完成签到 ,获得积分10
9秒前
1111A完成签到,获得积分10
10秒前
ding应助今天要喝椰汁采纳,获得10
10秒前
10秒前
10秒前
xiangrikui发布了新的文献求助10
11秒前
holly完成签到,获得积分10
11秒前
WerWu完成签到,获得积分10
12秒前
13秒前
Guoji_Huang完成签到,获得积分10
14秒前
丘比特应助虚幻天空采纳,获得10
15秒前
GeoY应助西西采纳,获得10
16秒前
咫尺天涯发布了新的文献求助10
16秒前
16秒前
16秒前
derrrrrsin发布了新的文献求助50
17秒前
小马甲应助耍酷的白山采纳,获得10
17秒前
打打应助苗条的平安采纳,获得10
19秒前
19秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870965
求助须知:如何正确求助?哪些是违规求助? 3413058
关于积分的说明 10682998
捐赠科研通 3137544
什么是DOI,文献DOI怎么找? 1731043
邀请新用户注册赠送积分活动 834557
科研通“疑难数据库(出版商)”最低求助积分说明 781203