Model-based contour extraction: an enabler for very low-frame SEM images metrology

计量学 有可能 计算机科学 人工智能 帧(网络) 萃取(化学) 特征提取 计算机视觉 模式识别(心理学) 计算机图形学(图像) 光学 物理 电信 心理治疗师 色谱法 心理学 化学
作者
Élie Sezestre,Juline Scoarnec,Jonathan Pradelles,L. Perraud,Aurélien Fay,Sébastien Bérard-Bergery,J. Bustos,Jean-Baptiste Henry,Olivier Dubreuil,Ivanie Mendes,Charles Valade,Alexandre Moly,Alice Batte,Nivea G. Schuch,Frédéric Robert,Thiago Figueiro
标识
DOI:10.1117/12.2616527
摘要

Among metrology tools in the semi-conductor manufacturing, critical dimension scanning electron microscopes (CD-SEM) are the most broadly used, especially due to their high resolution, low destructivity, and high throughput. Contour metrology on CD-SEM images has become essential for characterization, modelling, and control of advanced lithography processes. In particular, OPC model's accuracy can be highly improved using contours metrology. One of the issues when dealing with CD-SEM metrology is that the results are noise sensitive. Moreover, diminishing noise in CD-SEM acquisition leads to resist shrinkage due to exposure time increase. In addition, post-treatment of these shrinkage effects requires compensation algorithms such as artificial intelligence (AI)- driven algorithms, that are another contributor to the error budget of metrology systems. There is thus a need for an accurate, robust to noise, and purely deterministic edge detection algorithm. In this article, we evaluate the benefits of relying on a model-based contour extraction approach for performing measurements. This approach is applied onto both synthetic and experimental CD-SEM images with various patterns (mostly 2D) and noise levels to assess the influence of image integration (frame number) on the contour detection and CD measurement. We demonstrate that a model-based contour extraction algorithm is able to precisely characterize SEM-induced 2D resist shrinkage. We observe that this model-based approach is more robust to noise than standard algorithms by 21% on synthetic data and by 36% on experimental data. Another way of seeing it is, while keeping the same precision, a model-based contour extraction approach can significantly reduce the requested image frame number. The benefits of adopting this approach range from reducing the shrinkage effects to improving SEM image acquisition time. Eventually, no step of shrinkage modelling calibration nor AI-driven image post processing are needed which implies a gain on simplicity and avoids modelling errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MJ发布了新的文献求助10
1秒前
1秒前
2秒前
沐雪完成签到,获得积分20
3秒前
4秒前
田様应助Xiang采纳,获得10
5秒前
6秒前
SYF完成签到,获得积分10
6秒前
夏天的倒影完成签到,获得积分10
6秒前
万能图书馆应助BUG采纳,获得10
7秒前
CipherSage应助MJ采纳,获得10
8秒前
深情访文完成签到,获得积分10
8秒前
8秒前
无花果应助BUG采纳,获得10
11秒前
科研通AI5应助judy采纳,获得10
11秒前
StonyinSICAU发布了新的文献求助10
11秒前
zsping发布了新的文献求助10
11秒前
思源应助xxn采纳,获得10
12秒前
13秒前
naitangkeke发布了新的文献求助10
15秒前
Uni应助螃蟹医生采纳,获得10
15秒前
Hello应助快乐科研采纳,获得10
15秒前
17秒前
17秒前
大个应助2223采纳,获得10
17秒前
19秒前
小幸运完成签到,获得积分10
21秒前
22秒前
23秒前
牛大关注了科研通微信公众号
24秒前
24秒前
24秒前
ZWTH完成签到,获得积分10
25秒前
zsping完成签到,获得积分10
25秒前
25秒前
25秒前
慕豁发布了新的文献求助10
26秒前
judy完成签到,获得积分10
26秒前
ywang发布了新的文献求助10
26秒前
xxn发布了新的文献求助10
28秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829369
求助须知:如何正确求助?哪些是违规求助? 3372030
关于积分的说明 10470309
捐赠科研通 3091581
什么是DOI,文献DOI怎么找? 1701245
邀请新用户注册赠送积分活动 818327
科研通“疑难数据库(出版商)”最低求助积分说明 770830