Coordination-Assisted Precise Construction of Metal Oxide Nanofilms for High-Performance Solid-State Batteries

阳极 电解质 氧化物 纳米技术 陶瓷 制作 阴极 原子层沉积 化学 金属 锂(药物) 化学工程 电极 材料科学 图层(电子) 有机化学 物理化学 病理 内分泌学 替代医学 工程类 医学
作者
Sijie Guo,Yutao Li,Bing Li,Nicholas S. Grundish,Amin Cao,Yonggang Sun,Yan‐Song Xu,Yanglimin Ji,Yan Qiao,Qinghua Zhang,Fanqi Meng,Zhihao Zhao,Dong Wang,Xing Zhang,Lin Gu,Xiqian Yu,Li‐Jun Wan
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (5): 2179-2188 被引量:54
标识
DOI:10.1021/jacs.1c10872
摘要

The application of solid-state batteries (SSBs) is challenged by the inherently poor interfacial contact between the solid-state electrolyte (SSE) and the electrodes, typically a metallic lithium anode. Building artificial intermediate nanofilms is effective in tackling this roadblock, but their implementation largely relies on vapor-based techniques such as atomic layer deposition, which are expensive, energy-intensive, and time-consuming due to the monolayer deposited per cycle. Herein, an easy and low-cost wet-chemistry fabrication process is used to engineer the anode/solid electrolyte interface in SSBs with nanoscale precision. This coordination-assisted deposition is initiated with polyacrylate acid as a functional polymer to control the surface reaction, which modulates the distribution and decomposition of metal precursors to reliably form a uniform crack-free and flexible nanofilm of a large variety of metal oxides. For demonstration, artificial Al2O3 interfacial nanofilms were deposited on a ceramic SSE, typically garnet-structured Li6.5La3Zr1.5Ta0.5O12 (LLZT), that led to a significant decrease in the Li/LLZT interfacial resistance (from 2079.5 to 8.4 Ω cm2) as well as extraordinarily long cycle life of the assembled SSBs. This strategy enables the use of a nickel-rich LiNi0.83Co0.07Mn0.1O2 cathode to deliver a reversible capacity of 201.5 mAh g-1 at a considerable loading of 4.8 mg cm-2, featuring performance metrics for an SSB that is competitive with those of traditional Li-ion systems. Our study demonstrates the potential of solution-based routes as an affordable and scalable manufacturing alternative to vapor-based deposition techniques that can accelerate the development of SSBs for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助无辜的小甜瓜采纳,获得10
1秒前
1秒前
HJQin发布了新的文献求助10
3秒前
ZTD完成签到,获得积分10
3秒前
3秒前
3秒前
阿吉完成签到,获得积分10
4秒前
JoshZzz发布了新的文献求助10
5秒前
风趣的小甜瓜完成签到,获得积分10
5秒前
tcheng发布了新的文献求助10
5秒前
阿吉发布了新的文献求助10
7秒前
戎盼盼发布了新的文献求助10
8秒前
谢青驳回了Owen应助
9秒前
WLL完成签到,获得积分10
10秒前
ysynqqr发布了新的文献求助30
10秒前
Stella发布了新的文献求助10
11秒前
搜集达人应助HJQin采纳,获得10
13秒前
lff完成签到,获得积分10
13秒前
浅梦星河完成签到,获得积分10
14秒前
renpp822发布了新的文献求助10
16秒前
妍小猪发布了新的文献求助10
17秒前
科研通AI5应助曾经的代曼采纳,获得10
18秒前
19秒前
充电宝应助子衿采纳,获得10
19秒前
乐乐应助ysynqqr采纳,获得10
23秒前
天天快乐应助澍澍采纳,获得10
23秒前
zhuzhifang完成签到,获得积分10
24秒前
24秒前
戎盼盼完成签到,获得积分10
26秒前
慕青应助renpp822采纳,获得30
26秒前
心静如水发布了新的文献求助10
27秒前
28秒前
Vicky完成签到 ,获得积分10
29秒前
ljx完成签到 ,获得积分10
30秒前
徐徐徐徐发布了新的文献求助10
31秒前
科研怪人完成签到 ,获得积分10
32秒前
32秒前
33秒前
34秒前
35秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823649
求助须知:如何正确求助?哪些是违规求助? 3366071
关于积分的说明 10438723
捐赠科研通 3085191
什么是DOI,文献DOI怎么找? 1697245
邀请新用户注册赠送积分活动 816302
科研通“疑难数据库(出版商)”最低求助积分说明 769492