Identification of a nine ferroptosis-related lncRNA prognostic signature for lung adenocarcinoma

比例危险模型 单变量 接收机工作特性 多元统计 生存分析 试验装置 Lasso(编程语言) 威尔科克森符号秩检验 回归 签名(拓扑) 对数秩检验 生物 肿瘤科 计算生物学 计算机科学 医学 内科学 人工智能 统计 数学 机器学习 万维网 曼惠特尼U检验
作者
Xiaowei Tong,Yujiao Zhang,Guodong Yang,Guanghui Yi
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-210507/v2
摘要

Abstract Background: Recently, mounting of studies has shown that lncRNA affects tumor progression through the regulation of ferroptosis. The current study aims to construct a robust ferroptosis-related lncRNAs signature to increase the predicted value of lung adenocarcinoma (LUAD) by bioinformatics analysis. Methods: The transcriptome data were abstracted from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were screened by comparing 535 LAUD tissues with 59 adjacent non-LAUD tissues. Univariate Cox regression, lasso regression, multivariate Cox regression were conducted to design a ferroptosis-related lncRNA signature. This signature’s prognosis was verified by the log-rank test of Kaplan-Meier curve and the area under curve (AUC) of receiver operating characteristic (ROC) in train set, test set, and entire set. Furthermore, univariate and multivariate Cox regression were used to analyze its independent prognostic ability. The relationship of the ferroptosis-linked lncRNAs' expression and clinical variables was demonstrated by Wilcoxon rank-sum test and Kruskal-Wallis test. Gene set enrichment analysis (GSEA) was performed to signaling pathways it may involve. Results: 1224 differentially expressed lncRNAs were identified, of which 195 are ferroptosis-related lncRNAs. A nine ferroptosis-related lncRNAs (AC099850.3, NAALADL2-AS2, AL844908.1, AL365181.2, SMIM25, FAM83A-AS1, LINC01116, AL049836.1, C20orf197) prognostic signature was constructed. This model's prognosis in the high-risk group is obviously worse than that of the low-risk group in train set, test set, and entire set. The AUC of ROC predicting the three years survival in the train set, test set, and entire set was 0.754, 0.716, and 0.738, respectively. Moreover, the designed molecular signature was found to be an independent prognostic variable. The expression of these lncRNAs and the lncRNA signature are related to clinical stage, T stage, Lymph-node status, distant metastasis. Finally, GSEA analysis results show that the signature is involved in eight tumor-related and metabolism-related signaling pathways Conclusion: The current study constructed, validated, and evaluated a nine ferroptosis-related lncRNA signature which can independently be used to predict the prognosis of LAUD patients, and may become a new therapeutic target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangdamiao发布了新的文献求助10
5秒前
砍柴少年完成签到,获得积分20
9秒前
铁甲小杨完成签到,获得积分10
10秒前
11秒前
11秒前
bkagyin应助zhangdamiao采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
SYLH应助砍柴少年采纳,获得10
13秒前
禾口王发布了新的文献求助10
15秒前
lyt发布了新的文献求助10
16秒前
Lucas应助LL采纳,获得10
17秒前
拼搏灵安完成签到 ,获得积分10
18秒前
19秒前
20秒前
21秒前
田様应助peng采纳,获得10
21秒前
zq123完成签到,获得积分10
22秒前
小厮完成签到,获得积分10
23秒前
CFT发布了新的文献求助10
24秒前
包容的初南完成签到,获得积分10
24秒前
林瓜瓜发布了新的文献求助10
25秒前
25秒前
孙燕应助科研通管家采纳,获得10
26秒前
Aran_Zhang应助科研通管家采纳,获得10
26秒前
温暖寡妇关注了科研通微信公众号
26秒前
完美世界应助科研通管家采纳,获得10
26秒前
星辰大海应助科研通管家采纳,获得10
26秒前
26秒前
JamesPei应助科研通管家采纳,获得10
26秒前
共享精神应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
cxy发布了新的文献求助10
27秒前
从容芮应助科研通管家采纳,获得10
27秒前
27秒前
小夜完成签到,获得积分20
28秒前
30秒前
Eurus发布了新的文献求助10
30秒前
31秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867484
求助须知:如何正确求助?哪些是违规求助? 3409836
关于积分的说明 10665243
捐赠科研通 3134009
什么是DOI,文献DOI怎么找? 1728786
邀请新用户注册赠送积分活动 833077
科研通“疑难数据库(出版商)”最低求助积分说明 780560