Identification of a nine ferroptosis-related lncRNA prognostic signature for lung adenocarcinoma

比例危险模型 单变量 接收机工作特性 多元统计 生存分析 试验装置 Lasso(编程语言) 威尔科克森符号秩检验 回归 签名(拓扑) 对数秩检验 生物 肿瘤科 计算生物学 计算机科学 医学 内科学 人工智能 统计 数学 机器学习 万维网 曼惠特尼U检验
作者
Xiaowei Tong,Yujiao Zhang,Guodong Yang,Guanghui Yi
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-210507/v2
摘要

Abstract Background: Recently, mounting of studies has shown that lncRNA affects tumor progression through the regulation of ferroptosis. The current study aims to construct a robust ferroptosis-related lncRNAs signature to increase the predicted value of lung adenocarcinoma (LUAD) by bioinformatics analysis. Methods: The transcriptome data were abstracted from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were screened by comparing 535 LAUD tissues with 59 adjacent non-LAUD tissues. Univariate Cox regression, lasso regression, multivariate Cox regression were conducted to design a ferroptosis-related lncRNA signature. This signature’s prognosis was verified by the log-rank test of Kaplan-Meier curve and the area under curve (AUC) of receiver operating characteristic (ROC) in train set, test set, and entire set. Furthermore, univariate and multivariate Cox regression were used to analyze its independent prognostic ability. The relationship of the ferroptosis-linked lncRNAs' expression and clinical variables was demonstrated by Wilcoxon rank-sum test and Kruskal-Wallis test. Gene set enrichment analysis (GSEA) was performed to signaling pathways it may involve. Results: 1224 differentially expressed lncRNAs were identified, of which 195 are ferroptosis-related lncRNAs. A nine ferroptosis-related lncRNAs (AC099850.3, NAALADL2-AS2, AL844908.1, AL365181.2, SMIM25, FAM83A-AS1, LINC01116, AL049836.1, C20orf197) prognostic signature was constructed. This model's prognosis in the high-risk group is obviously worse than that of the low-risk group in train set, test set, and entire set. The AUC of ROC predicting the three years survival in the train set, test set, and entire set was 0.754, 0.716, and 0.738, respectively. Moreover, the designed molecular signature was found to be an independent prognostic variable. The expression of these lncRNAs and the lncRNA signature are related to clinical stage, T stage, Lymph-node status, distant metastasis. Finally, GSEA analysis results show that the signature is involved in eight tumor-related and metabolism-related signaling pathways Conclusion: The current study constructed, validated, and evaluated a nine ferroptosis-related lncRNA signature which can independently be used to predict the prognosis of LAUD patients, and may become a new therapeutic target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不爱吃鱼完成签到,获得积分10
刚刚
1秒前
yyyyy完成签到,获得积分10
1秒前
谢建国发布了新的文献求助10
2秒前
YAN完成签到,获得积分10
2秒前
3秒前
oenao发布了新的文献求助10
3秒前
chenping_an完成签到 ,获得积分20
3秒前
七里香完成签到 ,获得积分10
3秒前
ash完成签到,获得积分10
4秒前
4秒前
4秒前
YM发布了新的文献求助10
4秒前
4秒前
你好完成签到 ,获得积分10
5秒前
薛之谦完成签到 ,获得积分10
6秒前
CodeCraft应助晴朗采纳,获得10
6秒前
6秒前
果子完成签到 ,获得积分10
6秒前
耿雪完成签到,获得积分10
6秒前
鼠鼠宝宝完成签到,获得积分10
7秒前
chen完成签到,获得积分10
7秒前
物华休完成签到,获得积分10
7秒前
dada发布了新的文献求助10
8秒前
cccc发布了新的文献求助10
9秒前
小王完成签到,获得积分10
9秒前
taoyuan完成签到,获得积分10
9秒前
9秒前
浮生梦完成签到 ,获得积分10
10秒前
孙皓阳完成签到,获得积分10
10秒前
lin发布了新的文献求助10
10秒前
王旭阳完成签到,获得积分20
10秒前
10秒前
11秒前
熊涛完成签到,获得积分10
11秒前
定位心海的锚完成签到,获得积分10
11秒前
11秒前
顾矜应助吴快快采纳,获得10
12秒前
大个应助A9W01U采纳,获得10
12秒前
wulin314发布了新的文献求助20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5176292
求助须知:如何正确求助?哪些是违规求助? 4365276
关于积分的说明 13591128
捐赠科研通 4215011
什么是DOI,文献DOI怎么找? 2311757
邀请新用户注册赠送积分活动 1310667
关于科研通互助平台的介绍 1258741