A Global Context-aware and Batch-independent Network for road extraction from VHR satellite imagery

计算机科学 深度学习 人工智能 规范化(社会学) 数据挖掘 稳健性(进化) 生物化学 化学 社会学 人类学 基因
作者
Qiqi Zhu,Yanan Zhang,Lizeng Wang,Yanfei Zhong,Qingfeng Guan,Xiaoyan Lu,Liangpei Zhang,Deren Li
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:175: 353-365 被引量:204
标识
DOI:10.1016/j.isprsjprs.2021.03.016
摘要

Road extraction is to automatically label the pixels of roads in satellite imagery with specific semantic categories based on the extraction of the topographical meaningful features. For governments, timely and accurate road mapping is crucial to plan infrastructure development and mobilize relief around the world. Recent advances in deep learning have shown their dominance on road extraction from very high-resolution (VHR) satellite imagery. However, previous road extraction based on deep learning mainly stacked the multiple convolution operators and failed to predict the contextual spatial relationship correctly. Besides, the precision of cross-domain road extraction is limited by an insufficient amount of labeled data and the transferability of the model. To remedy these issues, a Global Context-aware and Batch-independent Network (GCB-Net) is proposed, which is a novel road extraction framework extract complete and continuous road networks. In GCB-Net, the Global Context-Aware (GCA) block is added to the encoder-decoder structure to effectively integrate global context features. The Filter Response Normalization (FRN) layer is used to enhance the original basic network, which eliminates the batch dependency to accelerate learning and further improve the robustness of the model. Experimental results on two diverse road extraction data sets demonstrated that the proposed method outperformed the state-of-the-art methods both quantity and quality. Moreover, to test the robust generalizability of the proposed method, the proposed CHN6-CUG Roads Dataset was used for spatial transfer evaluation, and GCB-Net achieved significantly higher transferability than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yyy发布了新的文献求助10
刚刚
瘦瘦的白梦完成签到,获得积分10
2秒前
2秒前
3秒前
bkagyin应助mtfx采纳,获得10
3秒前
面包发布了新的文献求助10
4秒前
kzy完成签到,获得积分20
4秒前
李承月发布了新的文献求助20
5秒前
LIUDAN发布了新的文献求助10
6秒前
隐形曼青应助Anmaterchem1采纳,获得10
7秒前
dada完成签到,获得积分10
7秒前
8秒前
小白完成签到 ,获得积分10
8秒前
rock完成签到,获得积分20
9秒前
11秒前
今后应助zw采纳,获得30
12秒前
FashionBoy应助大气梦蕊采纳,获得10
13秒前
彭于晏应助刘畅采纳,获得10
13秒前
13秒前
14秒前
King发布了新的文献求助10
14秒前
大郎关注了科研通微信公众号
15秒前
眼睛大的怀曼完成签到,获得积分10
16秒前
16秒前
17秒前
DHM完成签到,获得积分10
18秒前
Akim应助minorcold采纳,获得10
18秒前
18秒前
Eliauk完成签到,获得积分10
21秒前
焦良波发布了新的文献求助10
22秒前
22秒前
秀丽莛完成签到,获得积分10
22秒前
隐形曼青应助乐观的海采纳,获得10
23秒前
Orange应助TuTu采纳,获得10
23秒前
24秒前
赘婿应助落寞的易绿采纳,获得10
25秒前
Hello应助朴实的绮南采纳,获得10
25秒前
26秒前
Jian完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5113157
求助须知:如何正确求助?哪些是违规求助? 4320580
关于积分的说明 13462775
捐赠科研通 4151924
什么是DOI,文献DOI怎么找? 2275014
邀请新用户注册赠送积分活动 1276951
关于科研通互助平台的介绍 1215136