An application of artificial intelligence techniques in prediction of birds soundscape impact on tourists’ mental restoration in natural urban areas

声景 麻雀 支持向量机 帕鲁斯 自然声音 地理 计算机科学 人工智能 生态学 声音(地理) 生物 语音识别 地貌学 地质学
作者
Ali Jahani,Saba Kalantary,Asal Alitavoli
出处
期刊:Urban Forestry & Urban Greening [Elsevier]
卷期号:61: 127088-127088 被引量:32
标识
DOI:10.1016/j.ufug.2021.127088
摘要

The characteristics of birds' sounds assume a primary role in tourists' mental restoration and stress recovery. The aim of this research is the evaluation of birds' sound composition in mental restoration of urban tourists to develop a decision support system as a practical tool. In this order, the recorded sounds of six birds were composed (57 composed sounds) and the human perception approach was used to assess the impact of sounds on the urban tourist's mental restoration. The MLP (Multi-Layer Perceptron), RBFNN (Radial Basis Function Neural Network) and SVM (Support Vector Machine) models were developed for mental restoration prediction in different birds' sound compositions. The results indicated that RBFNN model output (R2 training = 0.89, and R2 test = 0.85) has the best accuracy compared to the MLP and SVM models in prediction of birds' soundscape score in natural urban areas. According to the sensitivity analysis, the values of White eared Bulbul (Pycononotus leucotis), Great Tit (Parus major), House Sparrow (Passer domesticus), Laughing Dove (Spilopelia senegalensis), White Wagtail (Motacilla alba), and Eurasian Magpie (Pica pica) are prioritized respectively that influence the RBFNN model outputs. In practice, the designed environmental decision support system tool is applied by urban planners, managers, psychoacoustic researchers, and landscape architects to predict the landscape score in different birds' habitats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
blackyu发布了新的文献求助10
刚刚
QG完成签到,获得积分10
1秒前
1秒前
UntilYou完成签到,获得积分10
1秒前
He完成签到 ,获得积分10
1秒前
鹿友绿完成签到,获得积分10
2秒前
2秒前
精明曼冬发布了新的文献求助10
4秒前
完美世界应助香蕉乌冬面采纳,获得10
5秒前
小滨发布了新的文献求助10
6秒前
JamesPei应助yucj采纳,获得10
8秒前
闪闪寄风完成签到,获得积分10
9秒前
於傲松完成签到 ,获得积分10
9秒前
重要的静柏完成签到 ,获得积分10
10秒前
志可刘完成签到,获得积分10
11秒前
善学以致用应助文章大发采纳,获得10
12秒前
13秒前
安详的惜梦完成签到,获得积分10
14秒前
15秒前
ywty发布了新的文献求助30
16秒前
17秒前
超级灰狼完成签到 ,获得积分10
19秒前
mouxq发布了新的文献求助10
20秒前
21秒前
乐乐应助gm采纳,获得30
21秒前
Lucas应助Happy采纳,获得10
21秒前
顺利毕业完成签到,获得积分10
22秒前
天天快乐应助AamirAli采纳,获得30
23秒前
24秒前
24秒前
科研通AI6应助Van采纳,获得10
24秒前
24秒前
所所应助终陌采纳,获得10
25秒前
小青椒应助魏儒蕾采纳,获得30
25秒前
26秒前
sure完成签到,获得积分10
28秒前
28秒前
大模型应助miku1采纳,获得10
29秒前
29秒前
29秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381634
求助须知:如何正确求助?哪些是违规求助? 4504891
关于积分的说明 14019782
捐赠科研通 4414178
什么是DOI,文献DOI怎么找? 2424662
邀请新用户注册赠送积分活动 1417690
关于科研通互助平台的介绍 1395491