光热治疗
脂质体
生物相容性
量子点
材料科学
纳米技术
石墨烯
纳米颗粒
纳米载体
光热效应
水溶液
化学工程
化学
有机化学
工程类
冶金
作者
Chenghao Liu,Yuan-Yuan Liu,Qing Chang,Qingfeng Shu,Ning Shen,Haifang Wang,Yijun Xie,Xiaoyong Deng
出处
期刊:Langmuir
[American Chemical Society]
日期:2021-11-22
卷期号:37 (48): 14096-14104
被引量:11
标识
DOI:10.1021/acs.langmuir.1c02338
摘要
Ultrasmall nanoparticles (USNPs) with sizes below 10 nm have shown great potentials in medical applications owing to their outstanding physical, chemical, optical, and biological properties. However, they suffer from a rapid renal clearance and biodegradation rate in the biological environment due to the small size. Liposomes are one of the most promising delivery nanocarriers for loading USNPs because of their excellent biocompatibility and lipid bilayer structure. Encapsulation of USNPs into liposomes in an efficient and controllable manner remains a challenge. In this study, we achieved a high loading of graphene quantum dots (GQDs, ∼4 nm), a typical USNP, into the aqueous core of liposomes (45.68 ± 1.44%), which was controllable by the pressure. The GQDs-loaded liposomes (GQDs-LPs) exhibited a very good aqueous stability for over a month. Furthermore, indocyanine green (ICG), an efficient near-infrared (NIR) photothermal agent, was introduced in the GQDs-LP system that could convert NIR laser energy into thermal energy and break down the liposomes, causing the release of GQDs in 6 min. Moreover, this NIR light-controlled release system (GQDs-ICG-LPs) also exhibited a good photothermal therapeutic performance in vitro, and 75% of cancer cells were killed at a concentration of 200 μg/mL. Overall, the successful development of the NIR light-controlled release system has laid a solid foundation for the future biomedical application of USNPs-loaded liposomes.
科研通智能强力驱动
Strongly Powered by AbleSci AI