Accurate Follicle Enumeration in Adult Mouse Ovaries

卵巢储备 生物 卵泡发生 毛囊 体视学 卵泡 卵巢 保持生育能力 生殖生物学 卵子发生 生育率 男科 生理学 卵母细胞 不育 人口 内分泌学 怀孕 细胞生物学 胚胎 医学 遗传学 低温保存 胚胎发生 环境卫生
作者
Amy Winship,Urooza C. Sarma,Lauren R. Alesi,Karla J. Hutt
出处
期刊:Journal of Visualized Experiments [MyJOVE]
卷期号: (164) 被引量:14
标识
DOI:10.3791/61782
摘要

Sexually reproducing female mammals are born with their entire lifetime supply of oocytes. Immature, quiescent oocytes are found within primordial follicles, the storage unit of the female germline. They are non-renewable, thus their number at birth and subsequent rate of loss largely dictates the female fertile lifespan. Accurate quantification of primordial follicle numbers in women and animals is essential for determining the impact of medicines and toxicants on the ovarian reserve. It is also necessary for evaluating the need for, and success of, existing and emerging fertility preservation techniques. Currently, no methods exist to accurately measure the number of primordial follicles comprising the ovarian reserve in women. Furthermore, obtaining ovarian tissue from large animals or endangered species for experimentation is often not feasible. Thus, mice have become an essential model for such studies, and the ability to evaluate primordial follicle numbers in whole mouse ovaries is a critical tool. However, reports of absolute follicle numbers in mouse ovaries in the literature are highly variable, making it difficult to compare and/or replicate data. This is due to a number of factors including strain, age, treatment groups, as well as technical differences in the methods of counting employed. In this article, we provide a step-by-step instructional guide for preparing histological sections and counting primordial follicles in mouse ovaries using two different methods: [1] stereology, which relies on the fractionator/optical dissector technique; and [2] the direct count technique. Some of the key advantages and drawbacks of each method will be highlighted so that reproducibility can be improved in the field and to enable researchers to select the most appropriate method for their studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三石呦423发布了新的文献求助30
刚刚
威化关注了科研通微信公众号
刚刚
杨柳9203发布了新的文献求助10
1秒前
mmmxxxjjj完成签到,获得积分20
1秒前
chunyeliangchuan完成签到,获得积分20
1秒前
曹沛岚发布了新的文献求助10
2秒前
75986686发布了新的文献求助10
3秒前
3秒前
4秒前
许甜甜鸭应助Wangyingjie5采纳,获得10
4秒前
小不点发布了新的文献求助10
4秒前
坦率的匪完成签到,获得积分10
6秒前
阿桂完成签到 ,获得积分10
6秒前
7秒前
霸气安筠完成签到,获得积分10
7秒前
机灵芷文完成签到,获得积分10
8秒前
sys完成签到,获得积分10
9秒前
Ava应助小不点采纳,获得10
9秒前
小柒发布了新的文献求助10
10秒前
漫秋霞舞发布了新的文献求助10
10秒前
10秒前
jimmy完成签到,获得积分10
12秒前
丘比特应助75986686采纳,获得10
12秒前
14秒前
大秦骑兵完成签到,获得积分10
15秒前
16秒前
威武画板完成签到 ,获得积分10
17秒前
17秒前
chaijy87完成签到,获得积分10
17秒前
三石呦423完成签到,获得积分10
18秒前
正直草丛完成签到 ,获得积分10
18秒前
19秒前
英姑应助小玉采纳,获得30
19秒前
威化发布了新的文献求助10
21秒前
pignai完成签到,获得积分10
21秒前
陈橙子发布了新的文献求助10
21秒前
仰天虾米完成签到,获得积分20
21秒前
whitedawn发布了新的文献求助10
21秒前
Badass发布了新的文献求助10
22秒前
独特谷丝完成签到,获得积分20
22秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828264
求助须知:如何正确求助?哪些是违规求助? 3370626
关于积分的说明 10464223
捐赠科研通 3090515
什么是DOI,文献DOI怎么找? 1700455
邀请新用户注册赠送积分活动 817837
科研通“疑难数据库(出版商)”最低求助积分说明 770506