International evaluation of an AI system for breast cancer screening

假阳性悖论 乳腺摄影术 乳腺癌 接收机工作特性 假阳性和假阴性 人工智能 工作量 医学 乳腺癌筛查 边距(机器学习) 癌症 计算机科学 机器学习 医学物理学 内科学 操作系统
作者
Scott Mayer McKinney,Marcin Sieniek,Varun Godbole,Jonathan Godwin,Н. В. Антропова,Hutan Ashrafian,Trevor Back,Mary Chesus,Greg S. Corrado,Ara Darzi,Mozziyar Etemadi,Florencia Garcia-Vicente,Fiona J. Gilbert,Mark Halling‐Brown,Demis Hassabis,Sunny Jansen,Alan Karthikesalingam,Christopher Kelly,Dominic King,Joseph R. Ledsam
出处
期刊:Nature [Nature Portfolio]
卷期号:577 (7788): 89-94 被引量:2550
标识
DOI:10.1038/s41586-019-1799-6
摘要

Screening mammography aims to identify breast cancer at earlier stages of the disease, when treatment can be more successful1. Despite the existence of screening programmes worldwide, the interpretation of mammograms is affected by high rates of false positives and false negatives2. Here we present an artificial intelligence (AI) system that is capable of surpassing human experts in breast cancer prediction. To assess its performance in the clinical setting, we curated a large representative dataset from the UK and a large enriched dataset from the USA. We show an absolute reduction of 5.7% and 1.2% (USA and UK) in false positives and 9.4% and 2.7% in false negatives. We provide evidence of the ability of the system to generalize from the UK to the USA. In an independent study of six radiologists, the AI system outperformed all of the human readers: the area under the receiver operating characteristic curve (AUC-ROC) for the AI system was greater than the AUC-ROC for the average radiologist by an absolute margin of 11.5%. We ran a simulation in which the AI system participated in the double-reading process that is used in the UK, and found that the AI system maintained non-inferior performance and reduced the workload of the second reader by 88%. This robust assessment of the AI system paves the way for clinical trials to improve the accuracy and efficiency of breast cancer screening. An artificial intelligence (AI) system performs as well as or better than radiologists at detecting breast cancer from mammograms, and using a combination of AI and human inputs could help to improve screening efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
waoller1发布了新的文献求助10
1秒前
鱼鱼发布了新的文献求助10
1秒前
大川应助红白刀向前冲采纳,获得10
1秒前
2秒前
书桓发布了新的文献求助100
2秒前
dawnstar完成签到,获得积分10
2秒前
3秒前
zhan发布了新的文献求助10
3秒前
3秒前
4秒前
Ava应助调皮冰旋采纳,获得10
4秒前
bjyx完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
科研通AI6应助饶天源采纳,获得10
6秒前
周晓发布了新的文献求助10
7秒前
郝靖儿完成签到,获得积分10
7秒前
zjy1234发布了新的文献求助30
7秒前
8秒前
dawnstar发布了新的文献求助10
8秒前
Jiang完成签到,获得积分10
8秒前
666发布了新的文献求助10
9秒前
轻松大地完成签到,获得积分10
10秒前
zhouyin2发布了新的文献求助10
10秒前
10秒前
orixero应助碧蓝的安柏采纳,获得10
10秒前
秉文发布了新的文献求助10
11秒前
跳跃毒娘发布了新的文献求助30
11秒前
11秒前
菠萝蜜完成签到,获得积分10
11秒前
11秒前
悦耳的念波完成签到,获得积分10
12秒前
爱笑的眼睛完成签到,获得积分10
12秒前
耳冉完成签到,获得积分10
12秒前
日月小完成签到,获得积分10
13秒前
PAN发布了新的文献求助10
13秒前
F__完成签到,获得积分10
13秒前
科研通AI2S应助zhan采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098407
求助须知:如何正确求助?哪些是违规求助? 4310607
关于积分的说明 13431084
捐赠科研通 4137909
什么是DOI,文献DOI怎么找? 2266971
邀请新用户注册赠送积分活动 1270067
关于科研通互助平台的介绍 1206331