裂纹扩展阻力曲线
材料科学
撕裂
断裂韧性
紧凑拉伸试样
复合材料
断裂(地质)
张力(地质)
断裂力学
巴(单位)
裂纹尖端张开位移
裂缝闭合
几何学
结构工程
拉伸试验
极限抗拉强度
数学
地质学
工程类
海洋学
作者
Seung-Jae Kim,Ho-Wan Ryu,Jin-Weon Kim,Young-Jin Oh,Yun-Jae Kim
出处
期刊:Journal of Pressure Vessel Technology-transactions of The Asme
[ASM International]
日期:2021-02-06
卷期号:144 (1)
被引量:5
摘要
Abstract This paper examines the effect of complex crack geometry on the J-resistance curves obtained by strain-based ductile tearing simulation of complex cracked tension (CC(T)) specimens. The damage model is determined by analyzing the results of a smooth bar tensile test and a compact tension (C(T)) specimen toughness test on an SA508 Gr.1a low-alloy steel at 316 °C. The validity of the damage model and simulation method is checked by comparing the fracture test data for two CC(T) specimen tests. To investigate the effect of the complex crack geometry on the crack growth profiles and J-resistance curves, two geometric parameters (namely, the through-wall crack length and the surface crack depth) are systematically varied. It is found that the J-resistance curves for the CC(T) specimens with various through-wall crack lengths and surface crack depths are consistently lower than the corresponding 1 T C(T) J-resistance curves. The effect of the through-wall crack length upon the J-resistance curve is found to be less significant than that of the surface crack depth. Moreover, the J-resistance curve decreases continuously with increasing surface crack depth.
科研通智能强力驱动
Strongly Powered by AbleSci AI