Three‐dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations

梁(结构) 计算机科学 人工神经网络 放射治疗计划 深度学习 人工智能 核医学 集合(抽象数据类型) 相似性(几何) 医学物理学 放射治疗 医学 物理 放射科 光学 图像(数学) 程序设计语言
作者
Ana María Barragán Montero,Dan Nguyen,Weiguo Lu,Mu‐Han Lin,Roya Norouzi‐Kandalan,Xavier Geets,Edmond Sterpin,Steve Jiang
出处
期刊:Medical Physics [Wiley]
卷期号:46 (8): 3679-3691 被引量:171
标识
DOI:10.1002/mp.13597
摘要

Purpose The use of neural networks to directly predict three‐dimensional dose distributions for automatic planning is becoming popular. However, the existing methods use only patient anatomy as input and assume consistent beam configuration for all patients in the training database. The purpose of this work was to develop a more general model that considers variable beam configurations in addition to patient anatomy to achieve more comprehensive automatic planning with a potentially easier clinical implementation, without the need to train specific models for different beam settings. Methods The proposed anatomy and beam (AB) model is based on our newly developed deep learning architecture, and hierarchically densely connected U‐Net (HD U‐Net), which combines U‐Net and DenseNet. The AB model contains 10 input channels: one for beam setup and the other 9 for anatomical information (PTV and organs). The beam setup information is represented by a 3D matrix of the non‐modulated beam’s eye view ray‐tracing dose distribution. We used a set of images from 129 patients with lung cancer treated with IMRT with heterogeneous beam configurations (4–9 beams of various orientations) for training/validation (100 patients) and testing (29 patients). Mean squared error was used as the loss function. We evaluated the model’s accuracy by comparing the mean dose, maximum dose, and other relevant dose–volume metrics for the predicted dose distribution against those of the clinically delivered dose distribution. Dice similarity coefficients were computed to address the spatial correspondence of the isodose volumes between the predicted and clinically delivered doses. The model was also compared with our previous work, the anatomy only (AO) model, which does not consider beam setup information and uses only 9 channels for anatomical information. Results The AB model outperformed the AO model, especially in the low and medium dose regions. In terms of dose–volume metrics, AB outperformed AO by about 1–2%. The largest improvement was found to be about 5% in lung volume receiving a dose of 5Gy or more ( V 5 ). The improvement for spinal cord maximum dose was also important, that is, 3.6% for cross‐validation and 2.6% for testing. The AB model achieved Dice scores for isodose volumes as much as 10% higher than the AO model in low and medium dose regions and about 2–5% higher in high dose regions. Conclusions The AO model, which does not use beam configuration as input, can still predict dose distributions with reasonable accuracy in high dose regions but introduces large errors in low and medium dose regions for IMRT cases with variable beam numbers and orientations. The proposed AB model outperforms the AO model substantially in low and medium dose regions, and slightly in high dose regions, by considering beam setup information through a cumulative non‐modulated beam’s eye view ray‐tracing dose distribution. This new model represents a major step forward towards predicting 3D dose distributions in real clinical practices, where beam configuration could vary from patient to patient, from planner to planner, and from institution to institution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
911发布了新的文献求助10
2秒前
3秒前
细腻的迎海完成签到,获得积分20
3秒前
唠叨的耷发布了新的文献求助10
3秒前
蝶儿完成签到,获得积分10
3秒前
时不我待C完成签到,获得积分10
3秒前
洁净的幼珊完成签到,获得积分10
3秒前
nini发布了新的文献求助10
4秒前
北海怪兽完成签到 ,获得积分10
4秒前
lwccc发布了新的文献求助10
5秒前
CodeCraft应助宛雷雅采纳,获得10
5秒前
无极微光应助花骨头采纳,获得30
5秒前
星辰大海应助麦子采纳,获得10
6秒前
某不科学的萌萌应助静静采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
WQ完成签到 ,获得积分10
8秒前
陈思雨发布了新的文献求助10
8秒前
快乐含蕾发布了新的文献求助10
9秒前
liruibai完成签到,获得积分10
9秒前
泡泡完成签到,获得积分10
9秒前
咸鱼发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
13秒前
王十七完成签到 ,获得积分10
13秒前
911完成签到,获得积分10
13秒前
李健的粉丝团团长应助QQQ采纳,获得10
13秒前
充电宝应助夕子爱科研采纳,获得10
15秒前
15秒前
Jasper应助yiyi采纳,获得10
15秒前
15秒前
哎呀哎呀发布了新的文献求助30
16秒前
16秒前
16秒前
n1gern发布了新的文献求助10
17秒前
lwccc完成签到,获得积分10
18秒前
18秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611163
求助须知:如何正确求助?哪些是违规求助? 4695678
关于积分的说明 14887818
捐赠科研通 4724699
什么是DOI,文献DOI怎么找? 2545514
邀请新用户注册赠送积分活动 1510182
关于科研通互助平台的介绍 1473149