Highly Transparent and Broadband Electromagnetic Interference Shielding Based on Ultrathin Doped Ag and Conducting Oxides Hybrid Film Structures

材料科学 电磁屏蔽 电磁干扰 光电子学 电磁干扰 柔性电子器件 数码产品 导电体 制作 电气工程 复合材料 医学 工程类 病理 替代医学
作者
Heyan Wang,Chengang Ji,Cheng Zhang,Yilei Zhang,Zhong Zhang,Zhengang Lu,Jiubin Tan,L. Jay Guo
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:11 (12): 11782-11791 被引量:109
标识
DOI:10.1021/acsami.9b00716
摘要

Reducing electromagnetic interference (EMI) across a broad radio frequency band is crucial to eliminate adverse effects of increasingly complex electromagnetic environment. Current shielding materials or methods suffer from trade-offs between optical transmittance and EMI shielding capability. Moreover, poor mechanical flexibility and fabrication complexity significantly limit their further applications in flexible electronics. In this work, an ultrathin (8 nm) and continuous doped silver (Ag) film was obtained by introducing a small amount of copper during the sputtering deposition of Ag and investigated as transparent EMI shielding components. The electromagnetic Ag shielding (EMAGS) film was realized in the form of conductive dielectric-metal-dielectric design to relieve the electro-optical trade-offs, which transmits 96.5% visible light relative to the substrate and shows an excellent average EMI shielding effectiveness (SE) of ∼26 dB, over a broad bandwidth of 32 GHz, covering the entire X, Ku, Ka, and K bands. EMI SE >30 dB was obtained by simply stacking two layers of EMAGS films together and can be further improved up to 50 dB by separating two layers with a quarter-wavelength space. The flexible EMAGS film shows a stable EMI shielding performance under repeated mechanical bending. In addition, large-area EMAGS films were demonstrated by a roll-to-roll sputtering system, proving the feasibility for mass production. The high-performance EMAGS film holds great potential for various applications in wearable electronics, healthcare devices, and electronic safety areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗忆灵发布了新的文献求助10
刚刚
刻苦的达完成签到,获得积分10
刚刚
呦呦又鹿完成签到,获得积分10
1秒前
肉肉完成签到,获得积分10
1秒前
詹岱周发布了新的文献求助10
2秒前
秋辞完成签到,获得积分10
2秒前
毛毛球发布了新的文献求助20
3秒前
zho发布了新的文献求助10
3秒前
aaaa完成签到,获得积分10
3秒前
桃桃甜筒完成签到,获得积分10
4秒前
5秒前
Bailan完成签到,获得积分10
5秒前
Ws完成签到,获得积分10
5秒前
新雨完成签到 ,获得积分10
5秒前
yang发布了新的文献求助10
6秒前
小熊完成签到,获得积分10
7秒前
7秒前
含糊的子默完成签到 ,获得积分10
7秒前
顾矜应助9Songs采纳,获得10
8秒前
英俊的铭应助9Songs采纳,获得10
8秒前
香蕉觅云应助9Songs采纳,获得10
8秒前
斯文败类应助9Songs采纳,获得10
8秒前
缥缈耷完成签到,获得积分10
8秒前
我要发核心完成签到 ,获得积分10
8秒前
淡然的奎完成签到,获得积分10
8秒前
9秒前
Xiaoxin_Ju完成签到,获得积分10
10秒前
安古妮稀完成签到,获得积分10
10秒前
zhang完成签到,获得积分10
10秒前
10秒前
香蕉海白完成签到 ,获得积分10
11秒前
12秒前
云不暇完成签到 ,获得积分10
12秒前
wtdai完成签到,获得积分10
13秒前
迷路白桃发布了新的文献求助10
13秒前
蛋黄啵啵完成签到 ,获得积分10
13秒前
mailure发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
The Oxford Handbook of Video Game Music and Sound 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827518
求助须知:如何正确求助?哪些是违规求助? 3369808
关于积分的说明 10458344
捐赠科研通 3089517
什么是DOI,文献DOI怎么找? 1699957
邀请新用户注册赠送积分活动 817567
科研通“疑难数据库(出版商)”最低求助积分说明 770269