Bio-mining for biomarkers with a multi-resolution block chain

块(置换群论) 计算机科学 分辨率(逻辑) 计算生物学 人工智能 生物 数学 几何学
作者
Jeffrey L. Jenkins,Jarad Kopf,Trần Quang Bình,Christopher Frenchi,Harold Szu
出处
期刊:Proceedings of SPIE 卷期号:9496: 94960N-94960N 被引量:11
标识
DOI:10.1117/12.2180648
摘要

In this paper, we discuss a framework for bridging the gap between security and medical Large Data Analysis (LDA) with functional- biomarkers. Unsupervised Learning for individual e-IQ & IQ relying on memory eliciting (i.e. scent, grandmother images) and IQ baseline profiles could further enhance the ability to uniquely identify and properly diagnose individuals. Sub-threshold changes in a common/probable biomedical biomarker (disorders) means that an individual remains healthy, while a martingale would require further investigation and more measurements taken to determine credibility. Empirical measurements of human actions can discover anomalies hidden in data, which point to biomarkers revealed through stimulus response. We review the approach for forming a single-user baseline having 1-d devices and a scale-invariant representation for N users each (i) having N*d(i) total devices. Such a fractal representation of human-centric data provides self-similar levels information and relationships which are useful for diagnosis and identification causality anywhere from a mental disorder to a DNA match. Biomarkers from biomedical devices offer a robust way to collect data. Biometrics could be envisioned as enhanced and personalized biomedical devices (e.g. typing fist), but used for security. As long as the devices have a shared context origin, useful information can be found by coupling the sensors. In the case of the electroencephalogram (EEG), known patterns have emerged in low frequency Delta Theta Alpha Beta-Gamma (DTAB-G) waves when an individual views a familiar picture in the visual cortex which is shown on EEGs as a sharp peak. Using brainwaves as a functional biomarker for security can lead the industry to create more secure sessions by allowing not only passwords but also visual stimuli and/or keystrokes coupled with EEG to capture and stay informed about real time user e-IQ/IQ data changes. This holistic Computer Science (CS) Knowledge Discovery in Databases, Data Mining (KDD, DM) approach seeks to merge the fields having a shared data origin - biomarkers revealed through stimulus response.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hill完成签到,获得积分10
1秒前
从容不弱完成签到,获得积分10
1秒前
8R60d8应助Jodie采纳,获得10
1秒前
小幸运发布了新的文献求助30
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
上官若男应助花照林采纳,获得10
2秒前
戚小完成签到,获得积分10
3秒前
甜菜发布了新的文献求助10
3秒前
何my完成签到 ,获得积分10
3秒前
ViVi水泥要干喽完成签到 ,获得积分10
3秒前
优雅翎完成签到,获得积分10
3秒前
个性跳跳糖完成签到,获得积分10
3秒前
4秒前
4秒前
刘苏琪完成签到,获得积分10
4秒前
zxy发布了新的文献求助20
4秒前
bzc完成签到,获得积分10
5秒前
Iris完成签到,获得积分10
5秒前
5秒前
5秒前
zhencheng发布了新的文献求助10
5秒前
金磊应助seedcui采纳,获得10
5秒前
6秒前
6秒前
浮游应助渐离采纳,获得10
6秒前
lem1991完成签到,获得积分10
6秒前
凡凡发布了新的文献求助10
6秒前
6秒前
理想三寻完成签到,获得积分10
7秒前
美好越彬发布了新的文献求助10
7秒前
落寞白曼发布了新的文献求助10
7秒前
7秒前
喜悦完成签到,获得积分10
7秒前
花花完成签到,获得积分10
7秒前
做好人难完成签到,获得积分10
8秒前
安花发布了新的文献求助10
8秒前
JessieNN完成签到,获得积分10
8秒前
Lny发布了新的文献求助20
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483127
求助须知:如何正确求助?哪些是违规求助? 4583874
关于积分的说明 14393311
捐赠科研通 4513497
什么是DOI,文献DOI怎么找? 2473533
邀请新用户注册赠送积分活动 1459563
关于科研通互助平台的介绍 1433031