Sampling Big Trajectory Data for Traversal Trajectory Aggregate Query

树遍历 计算机科学 弹道 采样(信号处理) 导线 估计员 查询优化 数据挖掘 差异(会计) 骨料(复合) 算法 统计 数学 会计 大地测量学 物理 材料科学 滤波器(信号处理) 天文 业务 复合材料 计算机视觉 地理
作者
Yichen Ding,Yanhua Li,Xun Zhou,Zhuojie Huang,Simin You,Jun Luo
出处
期刊:IEEE Transactions on Big Data [IEEE Computer Society]
卷期号:5 (4): 550-563 被引量:8
标识
DOI:10.1109/tbdata.2018.2830780
摘要

This paper defines and investigates a novel trajectory query, namely, Traversal Trajectory Aggregate (TTA) Query: Given a trajectory database and a pair of upstream and downstream spatio-temporal (ST) regions (i.e., spatial area coupled with a time interval), a TTA query aims to retrieve the total number of unique trajectories that traverse through these two ST regions. Such TTA queries play an important role in various urban applications, such as route planning, taxi dispatching, and location-based advertising. Two baselines can answer such TTA queries: (a) exact search (over the entire ST query regions) can obtain the exact answer, but it leads to extremely long running time when the ST query regions are huge; (b) uniform-sampling-based approaches estimate the query answer with sampled trajectories. However, the uniform sampling distribution may lead to significant estimation variance for TTA query, because traversal trajectories are relatively few and unevenly distributed in the query regions. To tackle these challenges, this paper proposes a novel Targeted Index Sampling (TIS) framework to answer TTA queries with high estimation accuracy. TIS employs a two-stage framework, with a Pilot Sampling Estimation (PSE) stage to estimate the distribution of trajectories in ST query region, and an Integrated Importance Sampling (IIS) stage, which collects trajectories with the importance sampling distribution obtained in PSE, and estimates the query result with an asymptotically unbiased estimator. Extensive experiments and case studies using a large-scale real taxi trajectory dataset from Shenzhen, China demonstrate that our TIS framework achieves <; 10 percent estimation error with > 90 percent computational time reduction over exact search, and 50 percent reduction on estimation error (with similar running time) over uniform-distribution-based sampling approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢远涛发布了新的文献求助10
刚刚
刚刚
1秒前
HEAR完成签到,获得积分10
1秒前
1秒前
2秒前
dyce完成签到,获得积分10
2秒前
一木发布了新的文献求助30
2秒前
lin发布了新的文献求助10
2秒前
lmh完成签到 ,获得积分10
3秒前
仁爱的甜瓜完成签到 ,获得积分10
3秒前
3秒前
情怀应助czs采纳,获得10
4秒前
tonyfountain完成签到,获得积分10
4秒前
君不见钱包渐扁完成签到,获得积分10
4秒前
4秒前
研究啥完成签到,获得积分20
4秒前
小马甲应助bm采纳,获得10
4秒前
默11发布了新的文献求助10
5秒前
蜘蛛完成签到,获得积分10
5秒前
勤恳的水风完成签到 ,获得积分10
5秒前
keyantong发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
粉体杠精发布了新的文献求助50
6秒前
墨羽发布了新的文献求助10
6秒前
6秒前
乐乐应助上好佳采纳,获得10
6秒前
飞快的雁完成签到,获得积分10
6秒前
6秒前
wanci应助背后思卉采纳,获得10
7秒前
7秒前
echo发布了新的文献求助10
8秒前
Mercuryyy完成签到 ,获得积分10
9秒前
今天不吃饭完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
领导范儿应助zero采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4928387
求助须知:如何正确求助?哪些是违规求助? 4197510
关于积分的说明 13038703
捐赠科研通 3970507
什么是DOI,文献DOI怎么找? 2175750
邀请新用户注册赠送积分活动 1192883
关于科研通互助平台的介绍 1103634