双功能
电解质
阳极
阳离子聚合
电导率
电化学
材料科学
电化学窗口
无机化学
质子
化学工程
电极
化学
溶解
质子导体
质子输运
溴化物
离子电导率
纳米技术
极化(电化学)
化学稳定性
快离子导体
共价键
作者
Qiao Qiao,Xiao-Qin Ni,Xiaosong Xiong,Jin Zhang,Hong‐Bin Luo,Lili Liu,Xiao Ming Ren,Yuping Wu,Qiao Qiao,Xiao-Qin Ni,Xiaosong Xiong,Jin Zhang,Hong‐Bin Luo,Lili Liu,Xiao Ming Ren,Yuping Wu
标识
DOI:10.1002/anie.202519623
摘要
Abstract Despite promising prospects afforded by high power density and abundant proton sources, proton batteries (PBs) face practical limitations. Liquid electrolytes induce anode dissolution and parasitic reactions, while solid electrolytes suffer from low proton conductivity and poor electrode compatibility. Herein, we introduce a bifunctional strategy for PBs using a cationic covalent organic framework (EB‐COF). Synthesized from ethidium bromide (EB) and 2,4,6‐triformylphloroglucinol (TP), this bifunctional host simultaneously stabilizes phosphomolybdate (PMo 12 ) clusters anode and confines H 3 PO 4 as a solid‐state electrolyte within its nanochannels. The resulting EB‐COF:H 3 PO 4 electrolyte exhibits superior proton conductivity (>10 −2 S cm −1 ) and a wide electrochemical stability window (3.3 V versus SCE). The assembled PB delivers exceptional rate capability and cycling stability, retaining 91% capacity over 15 000 cycles at 10 A g −1 , surpassing all reported solid‐state PBs. This performance stems from excellent electrode‐electrolyte compatibility and the high structural stability of the EB‐COF:H 3 PO 4 system. This study provides valuable insights for developing reliable all‐solid‐state PBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI