Q-PPG: Energy-Efficient PPG-Based Heart Rate Monitoring on Wearable Devices

计算机科学 光容积图 可穿戴计算机 卷积神经网络 实时计算 人工智能 可穿戴技术 一般化 微控制器 人工神经网络 模拟 计算机视觉 嵌入式系统 滤波器(信号处理) 数学 数学分析
作者
Alessio Burrello,Daniele Jahier Pagliari,Matteo Risso,Simone Benatti,Enrico Macii,Luca Benini,Massimo Poncino
出处
期刊:IEEE Transactions on Biomedical Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:15 (6): 1196-1209 被引量:54
标识
DOI:10.1109/tbcas.2021.3122017
摘要

Hearth Rate (HR) monitoring is increasingly performed in wrist-worn devices using low-cost photoplethysmography (PPG) sensors. However, Motion Artifacts (MAs) caused by movements of the subject's arm affect the performance of PPG-based HR tracking. This is typically addressed coupling the PPG signal with acceleration measurements from an inertial sensor. Unfortunately, most standard approaches of this kind rely on hand-tuned parameters, which impair their generalization capabilities and their applicability to real data in the field. In contrast, methods based on deep learning, despite their better generalization, are considered to be too complex to deploy on wearable devices. In this work, we tackle these limitations, proposing a design space exploration methodology to automatically generate a rich family of deep Temporal Convolutional Networks (TCNs) for HR monitoring, all derived from a single "seed" model. Our flow involves a cascade of two Neural Architecture Search (NAS) tools and a hardware-friendly quantizer, whose combination yields both highly accurate and extremely lightweight models. When tested on the PPG-Dalia dataset, our most accurate model sets a new state-of-the-art in Mean Absolute Error. Furthermore, we deploy our TCNs on an embedded platform featuring a STM32WB55 microcontroller, demonstrating their suitability for real-time execution. Our most accurate quantized network achieves 4.41 Beats Per Minute (BPM) of Mean Absolute Error (MAE), with an energy consumption of 47.65 mJ and a memory footprint of 412 kB. At the same time, the smallest network that obtains a MAE 8 BPM, among those generated by our flow, has a memory footprint of 1.9 kB and consumes just 1.79 mJ per inference.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
轻松毒娘关注了科研通微信公众号
1秒前
1秒前
陈家园发布了新的文献求助10
1秒前
今后应助caisongliang采纳,获得10
2秒前
震动的化蛹完成签到,获得积分10
2秒前
3秒前
凯研完成签到,获得积分20
3秒前
4秒前
张小欠发布了新的文献求助10
5秒前
橘子柚子完成签到 ,获得积分10
6秒前
CZJ发布了新的文献求助10
6秒前
6秒前
6秒前
孤独千愁发布了新的文献求助10
6秒前
7秒前
Solar energy完成签到,获得积分10
7秒前
祝卿安完成签到 ,获得积分20
7秒前
昭蘅发布了新的文献求助10
7秒前
8秒前
9秒前
华仔应助QinCaibin采纳,获得10
9秒前
无极微光应助小蟹蟹吖采纳,获得20
11秒前
清冷渊发布了新的文献求助10
11秒前
Allen完成签到,获得积分10
12秒前
BareBear应助张美采纳,获得10
12秒前
BareBear应助张美采纳,获得10
12秒前
烟花应助张美采纳,获得10
12秒前
罗罗完成签到,获得积分10
13秒前
xxxxxxh完成签到,获得积分10
13秒前
13秒前
年把月拥有完成签到,获得积分10
14秒前
陈家园完成签到,获得积分10
15秒前
16秒前
心灵美半邪完成签到 ,获得积分10
18秒前
亦安发布了新的文献求助30
19秒前
Ava应助黄小雨采纳,获得10
19秒前
小蘑菇应助寂灭之时采纳,获得10
20秒前
20秒前
Max发布了新的文献求助10
21秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715