Investigating crystal plane effect of Co3O4 with various morphologies on catalytic activation of monopersulfate for degradation of phenol in water

催化作用 苯酚 化学 降级(电信) 化学计量学 反应速率常数 化学工程 动力学 Crystal(编程语言) 核化学 有机化学 电信 物理 量子力学 计算机科学 工程类 程序设计语言
作者
Weijie Liu,Haitao Wang,Jechan Lee,Eilhann E. Kwon,Xuan‐Thanh Bui,Siming You,Young‐Kwon Park,Shaoping Tong,Kun‐Yi Andrew Lin
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:276: 119368-119368 被引量:19
标识
DOI:10.1016/j.seppur.2021.119368
摘要

As phenol represents as the most typical persistent organic pollutants in wastewater, SO4•−-involved chemical oxidation techniques using monopersulfate (MPS) have been regarded as a promising method to eliminate phenol. Since Co3O4 is the benchmark heterogeneous catalyst for activating MPS, it is highly critical to investigate shape-varied Co3O4 catalysts with well-defined crystal planes for activating MPS to degrade phenol. Thus, the aim of this study is to elucidate how different Co3O4 catalysts with various well-defined planes would influence catalytic activities for MPS activation. Specifically, three Co3O4 nanocrystals are fabricated: nanoplate (NP), nanobundle (NB), and nanocube (NC) with different dominant exposed facets of {1 1 2}, {1 1 0}, and {1 0 0}, respectively. As the facets of {1 1 2} and {1 1 0} consist of more abundant Co2+/Co3+, Co3O4-NP and Co3O4-NB exhibit noticeably higher catalytic activities then Co3O4-NC for activating MPS to degrade phenol. Nevertheless, since Co3O4-NP shows a much higher surface area than Co3O4-NB, Co3O4-NP could exhibit a relatively high catalytic activity in comparison to Co3O4-NB. In addition, Co3O4-NP also exhibits much faster degradation kinetics with a rate constant of 0.061 min−1 at 30 °C, and more resistance towards pH variation, with much stable reaction stoichiometric efficiencies (RSE) ranging from 0.034 to 0.039 at pH = 3 ~ 9, than the other two Co3O4 nanocrystals, making Co3O4-NP with the {1 1 2} facet a more outstanding Co3O4 for activating MPS to degrade phenol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉情完成签到,获得积分10
刚刚
含蓄又亦发布了新的文献求助30
1秒前
佚名123发布了新的文献求助100
1秒前
NIJJJJJIA完成签到 ,获得积分10
1秒前
丘比特应助田攀采纳,获得10
1秒前
科研通AI6应助懒虫儿坤采纳,获得10
1秒前
AHR发布了新的文献求助10
1秒前
热爱生活发布了新的文献求助10
1秒前
研友_Z6G2D8发布了新的文献求助10
1秒前
慕青应助nonTUT采纳,获得10
2秒前
夜未央发布了新的文献求助10
2秒前
风中的台灯完成签到 ,获得积分10
3秒前
多晒太阳发布了新的文献求助30
3秒前
JamesPei应助Jamestangbw采纳,获得10
4秒前
充电宝应助jiojio采纳,获得10
4秒前
英姑应助王潇怡采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
桃知予发布了新的文献求助10
5秒前
SID发布了新的文献求助10
5秒前
CJX发布了新的文献求助10
5秒前
5秒前
zszz完成签到 ,获得积分10
5秒前
6秒前
CipherSage应助lokiyyy采纳,获得10
6秒前
you完成签到,获得积分10
6秒前
朴素豪完成签到,获得积分10
7秒前
8秒前
8秒前
Catherine发布了新的文献求助10
8秒前
沉静丹寒发布了新的文献求助10
8秒前
不安囧完成签到,获得积分10
9秒前
wzchiang应助至幸采纳,获得10
9秒前
9秒前
哟哟哟完成签到,获得积分10
10秒前
10秒前
爱撒娇的文博完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653747
求助须知:如何正确求助?哪些是违规求助? 4790572
关于积分的说明 15066040
捐赠科研通 4812391
什么是DOI,文献DOI怎么找? 2574512
邀请新用户注册赠送积分活动 1530011
关于科研通互助平台的介绍 1488724