超细纤维
材料科学
微流控
纳米技术
导电体
数码产品
毛细管作用
复合材料
化学
物理化学
作者
Jiahui Guo,Yunru Yu,Dagan Zhang,Han Zhang,Yuanjin Zhao
出处
期刊:Research
[American Association for the Advancement of Science]
日期:2021-01-01
卷期号:2021
被引量:76
标识
DOI:10.34133/2021/7065907
摘要
Electronic skins with distinctive features have attracted remarkable attention from researchers because of their promising applications in flexible electronics. Here, we present novel morphologically conductive hydrogel microfibers with MXene encapsulation by using a multi-injection coflow glass capillary microfluidic chip. The coaxial flows in microchannels together with fast gelation between alginate and calcium ions ensure the formation of hollow straight as well as helical microfibers and guarantee the in situ encapsulation of MXene. The resultant hollow straight and helical MXene hydrogel microfibers were with highly controllable morphologies and package features. Benefiting from the easy manipulation of the microfluidics, the structure compositions and the sizes of MXene hydrogel microfibers could be easily tailored by varying different flow rates. It was demonstrated that these morphologically conductive MXene hydrogel microfibers were with outstanding capabilities of sensitive responses to motion and photothermal stimulations, according to their corresponding resistance changes. Thus, we believe that our morphologically conductive MXene hydrogel microfibers with these excellent features will find important applications in smart flexible electronics especially electronic skins.
科研通智能强力驱动
Strongly Powered by AbleSci AI