Explainable AI for Data-Driven Feedback and Intelligent Action Recommendations to Support Students Self-Regulation

形成性评价 仪表板 计算机科学 学习分析 动作(物理) 分析 领域(数学) 人工智能 机器学习 人机交互 数据科学 数学教育 心理学 物理 数学 量子力学 纯数学
作者
Muhammad Afzaal,Jalal Nouri,Aayesha Zia,Panagiotis Papapetrou,Uno Fors,Yongchao Wu,Xiu Li,Rebecka Weegar
出处
期刊:Frontiers in artificial intelligence [Frontiers Media]
卷期号:4 被引量:71
标识
DOI:10.3389/frai.2021.723447
摘要

Formative feedback has long been recognised as an effective tool for student learning, and researchers have investigated the subject for decades. However, the actual implementation of formative feedback practices is associated with significant challenges because it is highly time-consuming for teachers to analyse students' behaviours and to formulate and deliver effective feedback and action recommendations to support students' regulation of learning. This paper proposes a novel approach that employs learning analytics techniques combined with explainable machine learning to provide automatic and intelligent feedback and action recommendations that support student's self-regulation in a data-driven manner, aiming to improve their performance in courses. Prior studies within the field of learning analytics have predicted students' performance and have used the prediction status as feedback without explaining the reasons behind the prediction. Our proposed method, which has been developed based on LMS data from a university course, extends this approach by explaining the root causes of the predictions and by automatically providing data-driven intelligent recommendations for action. Based on the proposed explainable machine learning-based approach, a dashboard that provides data-driven feedback and intelligent course action recommendations to students is developed, tested and evaluated. Based on such an evaluation, we identify and discuss the utility and limitations of the developed dashboard. According to the findings of the conducted evaluation, the dashboard improved students' learning outcomes, assisted them in self-regulation and had a positive effect on their motivation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助可靠的嫣然采纳,获得10
刚刚
刚刚
FelixChen完成签到,获得积分0
1秒前
怕孤单的若颜完成签到,获得积分10
1秒前
feng完成签到,获得积分10
1秒前
开心果大王完成签到,获得积分10
1秒前
大方岩完成签到,获得积分10
1秒前
2秒前
2秒前
YY完成签到,获得积分10
3秒前
jjdgangan完成签到,获得积分10
3秒前
柳树完成签到,获得积分10
3秒前
4秒前
zhengke924完成签到,获得积分10
5秒前
shy完成签到,获得积分10
6秒前
7秒前
缓慢手机完成签到,获得积分10
7秒前
8秒前
rosyw完成签到,获得积分10
8秒前
李静完成签到,获得积分10
9秒前
㊣㊣发布了新的文献求助10
9秒前
orchid完成签到,获得积分10
10秒前
流氓兔完成签到,获得积分10
10秒前
冰魂应助科研通管家采纳,获得20
10秒前
coolkid应助科研通管家采纳,获得10
10秒前
bubble完成签到,获得积分20
10秒前
期期应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得30
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
11秒前
ruby完成签到,获得积分10
11秒前
lzx完成签到,获得积分20
11秒前
逢考必过完成签到,获得积分10
12秒前
12秒前
活力的听露完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3892652
求助须知:如何正确求助?哪些是违规求助? 3435419
关于积分的说明 10792657
捐赠科研通 3160324
什么是DOI,文献DOI怎么找? 1745522
邀请新用户注册赠送积分活动 842922
科研通“疑难数据库(出版商)”最低求助积分说明 786948