物理
自旋(空气动力学)
绝缘体上的硅
电荷(物理)
自旋晶体管
晶体管
绝热过程
凝聚态物理
自旋霍尔效应
电压
自旋极化
量子力学
电子
光电子学
热力学
硅
作者
F Gürsoy,Phillipp Reck,Cosimo Gorini,Klaus Richter,İnanç Adagideli
标识
DOI:10.21468/scipostphys.14.4.060
摘要
Spin-orbit interaction (SOI) has been a key tool to steer and manipulate spin-dependent transport properties in two-dimensional electron gases. Here we demonstrate how spin currents can be created and efficiently read out in nano- or mesoscale conductors with time-dependent and spatially inhomogeneous Rashba SOI. Invoking an underlying non-Abelian SU(2) gauge structure we show how time-periodic spin-orbit fields give rise to spin electric forces and enable the generation of pure spin currents of the order of several hundred nano-Amperes. In a complementary way, by combining gauge transformations with “hidden” Onsager relations, we exploit spatially inhomogeneous Rashba SOI to convert spin currents (back) into charge currents. In combining both concepts, we devise a spin transistor that integrates efficient spin current generation, by employing dynamical SOI, with its experimentally feasible detection via conversion into charge signals. We derive general expressions for the respective spin- and charge conductance, covering large parameter regimes of SOI strength and driving frequencies, far beyond usual adiabatic approaches such as the frozen scattering matrix approximation. We check our analytical expressions and approximations with full numerical spin-dependent transport simulations and demonstrate that the predictions hold true in a wide range from low to high driving frequencies.
科研通智能强力驱动
Strongly Powered by AbleSci AI