亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The three-dimensional weakly supervised deep learning algorithm for traumatic splenic injury detection and sequential localization: an experimental study

医学 算法 接收机工作特性 腹部外伤 放射科 迟钝的 计算机断层摄影术 创伤中心 人工智能 预测值 回顾性队列研究 外科 计算机科学 内科学
作者
Chi‐Tung Cheng,Hou-Shian Lin,Chih-Po Hsu,Huan‐Wu Chen,Jen‐Fu Huang,Chih‐Yuan Fu,Chi‐Hsun Hsieh,Chun‐Nan Yeh,I‐Fang Chung,Chien‐Hung Liao
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:109 (5): 1115-1124 被引量:15
标识
DOI:10.1097/js9.0000000000000380
摘要

Splenic injury is the most common solid visceral injury in blunt abdominal trauma, and high-resolution abdominal computed tomography (CT) can adequately detect the injury. However, these lethal injuries sometimes have been overlooked in current practice. Deep learning (DL) algorithms have proven their capabilities in detecting abnormal findings in medical images. The aim of this study is to develop a three-dimensional, weakly supervised DL algorithm for detecting splenic injury on abdominal CT using a sequential localization and classification approach.The dataset was collected in a tertiary trauma center on 600 patients who underwent abdominal CT between 2008 and 2018, half of whom had splenic injuries. The images were split into development and test datasets at a 4 : 1 ratio. A two-step DL algorithm, including localization and classification models, was constructed to identify the splenic injury. Model performance was evaluated using the area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Grad-CAM (Gradient-weighted Class Activation Mapping) heatmaps from the test set were visually assessed. To validate the algorithm, we also collected images from another hospital to serve as external validation data.A total of 480 patients, 50% of whom had spleen injuries, were included in the development dataset, and the rest were included in the test dataset. All patients underwent contrast-enhanced abdominal CT in the emergency room. The automatic two-step EfficientNet model detected splenic injury with an AUROC of 0.901 (95% CI: 0.836-0.953). At the maximum Youden index, the accuracy, sensitivity, specificity, PPV, and NPV were 0.88, 0.81, 0.92, 0.91, and 0.83, respectively. The heatmap identified 96.3% of splenic injury sites in true positive cases. The algorithm achieved a sensitivity of 0.92 for detecting trauma in the external validation cohort, with an acceptable accuracy of 0.80.The DL model can identify splenic injury on CT, and further application in trauma scenarios is possible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
12秒前
34秒前
情怀应助玛卡巴卡采纳,获得10
34秒前
喻初原完成签到 ,获得积分10
46秒前
阳光的丹雪完成签到,获得积分10
47秒前
54秒前
爆米花应助斯提亚拉采纳,获得10
55秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
斯提亚拉发布了新的文献求助10
1分钟前
天天快乐应助Tree_QD采纳,获得10
1分钟前
斯提亚拉完成签到,获得积分10
1分钟前
2分钟前
吴开珍完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
烟花应助xxywmt采纳,获得10
3分钟前
橘橘橘子皮完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
xxywmt发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
852应助快乐傲南采纳,获得10
3分钟前
3分钟前
lovelife完成签到,获得积分10
3分钟前
快乐傲南发布了新的文献求助10
4分钟前
4分钟前
快乐傲南完成签到,获得积分10
4分钟前
淡定自中发布了新的文献求助10
4分钟前
4分钟前
4分钟前
玛卡巴卡发布了新的文献求助10
4分钟前
玛卡巴卡完成签到,获得积分10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
5分钟前
隐形曼青应助务实的初蝶采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554932
求助须知:如何正确求助?哪些是违规求助? 4639538
关于积分的说明 14656291
捐赠科研通 4581453
什么是DOI,文献DOI怎么找? 2512779
邀请新用户注册赠送积分活动 1487518
关于科研通互助平台的介绍 1458482