Enhance Fracture Toughness and Fatigue Resistance of Hydrogels by Reversible Alignment of Nanofibers

材料科学 自愈水凝胶 复合材料 各向异性 各向同性 小角X射线散射 韧性 纳米纤维 变形(气象学) 断裂韧性 散射 光学 高分子化学 物理
作者
Danqi Sun,Yang Gao,Yifan Zhou,Meng Yang,Jian Hu,Tongqing Lu,Tiejun Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (43): 49389-49397 被引量:24
标识
DOI:10.1021/acsami.2c16273
摘要

Biological tissues, such as heart valve, tendon, etc., possess excellent mechanical properties, which arises from their inherent anisotropic arrangement of soft and hard phases. Inspired by the anisotropic structures, many methods have been developed to synthesize hydrogels that can achieve mechanical properties comparable to biological tissues. Here, we describe a new method to enhance fracture toughness and fatigue resistance of hydrogels by introducing nanofibers which can reversibly align with elastic deformation to form an anisotropic structure. As a demonstration, we introduce stiff, rod-like cellulose nanocrystals (CNCs) into a polyacrylamide (PAAm) network. CNCs aggregate into clusters to form hard phases and entangle with the PAAm network. The CNC/PAAm composite hydrogel is initially isotropic, becomes anisotropic upon loading, and recovers to be isotropic upon unloading. During the deformation, the aligned CNC clusters at the crack tip can transmit the stress over the size of the cluster, effectively resisting crack growth. We use photoelasticity and small-angle X-ray scattering (SAXS) tests to observe the change of microstructures associated with deformation. The fracture toughness of CNC/PAAm hydrogels with different sizes of CNCs can reach 1000 J/m2. The fatigue threshold is about 100 J/m2, an order of magnitude higher than that of PAAm hydrogel. This work provides a simple and general method to strengthen hydrogels under both monotonic and cyclic loads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助珂珂采纳,获得10
3秒前
4秒前
5秒前
唐若冰完成签到,获得积分10
7秒前
SciGPT应助害怕的鹏飞采纳,获得10
7秒前
树池发布了新的文献求助10
8秒前
mm完成签到,获得积分10
9秒前
yiming完成签到,获得积分10
9秒前
Lonala完成签到,获得积分10
11秒前
money四面八方来关注了科研通微信公众号
12秒前
12秒前
jxcandice完成签到,获得积分10
15秒前
15秒前
小张z完成签到,获得积分10
15秒前
玖玖发布了新的文献求助10
16秒前
17秒前
masterchen完成签到,获得积分10
17秒前
21秒前
22秒前
sgkyy发布了新的文献求助150
22秒前
23秒前
24秒前
吴子冰发布了新的文献求助10
24秒前
26秒前
树池发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
Ken完成签到,获得积分10
28秒前
30秒前
HEIKU应助清爽的小懒虫采纳,获得10
31秒前
碎碎念s完成签到,获得积分10
31秒前
32秒前
GodMG完成签到,获得积分10
32秒前
依惜发布了新的文献求助10
33秒前
Chiuchiu完成签到,获得积分10
35秒前
35秒前
WT发布了新的文献求助10
36秒前
玖玖完成签到,获得积分10
36秒前
超酷的柠檬完成签到,获得积分20
37秒前
Ava应助严明采纳,获得10
40秒前
40秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864497
求助须知:如何正确求助?哪些是违规求助? 3406903
关于积分的说明 10651703
捐赠科研通 3130813
什么是DOI,文献DOI怎么找? 1726640
邀请新用户注册赠送积分活动 831917
科研通“疑难数据库(出版商)”最低求助积分说明 780051