Computational Analysis of Liriodenine's Therapeutic Potential in Breast Cancer: Targeting EGFR and the Complex Oncogenic Network for Drug Discovery

化学 药品 药物发现 乳腺癌 癌症 抗癌药 计算生物学 癌症研究 药理学 内科学 医学 生物 生物化学
作者
Jagdish Chand,Hannah Lalengzuali Fanai,Sheikh F. Ahmad,Haneen A. Al‐Mazroua,Talha Bin Emran
出处
期刊:Chemistry & Biodiversity [Wiley]
标识
DOI:10.1002/cbdv.202500885
摘要

Triple-negative breast cancer is highly aggressive, with limited treatment options and high resistance to existing therapies. Liriodenine, a natural alkaloid, shows potential as an anticancer agent, but its therapeutic mechanisms require further investigation. This study aimed to explore liriodenine's potential as a multi-target therapeutic agent for breast cancer. Molecular docking and dynamics simulations were conducted to assess liriodenine's interactions with key targets. Functional enrichment and pathway analyses were used to identify its involvement in critical processes such as cell proliferation, survival, and metastasis. Liriodenine exhibited strong binding affinity and stable interactions with epidermal growth factor receptors and modulated pathways such as PI3K-Akt, JAK-STAT, and angiogenesis. It targeted multiple breast cancer-related proteins, including mTOR, STAT3, and SRC, critical in tumor growth, immune evasion, and metastasis. Liriodenine shows promise as a multi-target agent for breast cancer therapy, with potential enhanced by structural optimization and the integration of computational and experimental approaches to improve specificity, bioavailability, efficacy, and safety. Overall, the current study provides a compelling rational for further preclinical validations to establish liriodenine's as a promising natural compound for breast cancer treatment, suggesting further in vitro and in vivo evaluation to identify antiproliferative and apoptosis activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YANA发布了新的文献求助30
1秒前
2秒前
4秒前
6秒前
7秒前
大个应助aa采纳,获得10
7秒前
JamesPei应助T_MC郭采纳,获得10
7秒前
曹梦龙完成签到,获得积分10
8秒前
9秒前
hxy完成签到,获得积分20
9秒前
山山完成签到 ,获得积分10
9秒前
9秒前
zjfmmu完成签到,获得积分10
10秒前
14秒前
14秒前
junzhu完成签到,获得积分10
17秒前
zd发布了新的文献求助10
19秒前
英俊的铭应助李娜采纳,获得10
19秒前
20秒前
所所应助欢呼的艳采纳,获得10
22秒前
尺素寸心完成签到,获得积分20
22秒前
郭晋华完成签到,获得积分10
23秒前
Pig-prodigy完成签到,获得积分10
25秒前
航行发布了新的文献求助10
25秒前
小蘑菇应助zd采纳,获得10
26秒前
搜集达人应助成就心锁采纳,获得10
28秒前
28秒前
上下完成签到 ,获得积分10
28秒前
30秒前
清脆的圆子完成签到,获得积分10
30秒前
zhujun完成签到,获得积分10
31秒前
31秒前
Tink完成签到,获得积分0
32秒前
甘乐完成签到 ,获得积分10
32秒前
传奇3应助Lisztan采纳,获得10
32秒前
醉生梦死发布了新的文献求助10
32秒前
33秒前
33秒前
Joker_Ye完成签到,获得积分10
34秒前
water应助哈哈哈采纳,获得10
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
求polyinfo中的所有数据,主要要共聚物的,有偿。 1500
Mechanics of Composite Strengthening 1500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水产动物免疫学 500
鱼类基因组学及基因组物种技术 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4176574
求助须知:如何正确求助?哪些是违规求助? 3711838
关于积分的说明 11705529
捐赠科研通 3394692
什么是DOI,文献DOI怎么找? 1862417
邀请新用户注册赠送积分活动 921170
科研通“疑难数据库(出版商)”最低求助积分说明 833056