Incomplete Multi-modal Disentanglement Learning with Application to Alzheimer’s Disease Diagnosis

情态动词 计算机科学 人工智能 疾病 医学 病理 化学 高分子化学
作者
Kangfu Han,Dan Hu,Fenqiang Zhao,Tianming Liu,Feng Yang,Gang Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3604361
摘要

Multi-modal neuroimaging data, including magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (PET), have greatly advanced the computer-aided diagnosis of Alzheimer's disease (AD) by providing shared and complementary information. However, the problem of incomplete multi-modal data remains inevitable and challenging. Conventional strategies that exclude subjects with missing data or synthesize missing scans either result in substantial sample reduction or introduce unwanted noise. To address this issue, we propose an Incomplete Multi-modal Disentanglement Learning method (IMDL) for AD diagnosis without missing scan synthesis, a novel model that employs a tiny Transformer to fuse incomplete multi-modal features extracted by modality-wise variational autoencoders adaptively. Specifically, we first design a cross-modality contrastive learning module to encourage modality-wise variational autoencoders to disentangle shared and complementary representations of each modality. Then, to alleviate the potential information gap between the representations obtained from complete and incomplete multi-modal neuroimages, we leverage the technique of adversarial learning to harmonize these representations with two discriminators. Furthermore, we develop a local attention rectification module comprising local attention alignment and multi-instance attention rectification to enhance the localization of atrophic areas associated with AD. This module aligns inter-modality and intra-modality attention within the Transformer, thus making attention weights more explainable. Extensive experiments conducted on ADNI and AIBL datasets demonstrated the superior performance of the proposed IMDL in AD diagnosis, and a further validation on the HABS-HD dataset highlighted its effectiveness for dementia diagnosis using different multi-modal neuroimaging data (i.e., T1-weighted MRI and diffusion tensor imaging).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助琴72采纳,获得10
1秒前
wu完成签到,获得积分20
1秒前
1秒前
2秒前
TDW发布了新的文献求助10
2秒前
雪落发布了新的文献求助10
3秒前
赘婿应助追尾的猫采纳,获得10
3秒前
3秒前
栓Q发布了新的文献求助30
5秒前
5秒前
13799772947发布了新的文献求助10
5秒前
6秒前
7秒前
Ava应助早早采纳,获得10
7秒前
研友_VZG7GZ应助xiaoxi采纳,获得10
7秒前
7秒前
Pomelo发布了新的文献求助10
8秒前
8秒前
星星发布了新的文献求助10
8秒前
Lockie应助浅池星采纳,获得10
8秒前
SuperZzz发布了新的文献求助10
8秒前
tianxie发布了新的文献求助10
9秒前
9秒前
夕晨踏雪发布了新的文献求助10
9秒前
9秒前
烟花应助年轻的觅风采纳,获得10
10秒前
阿佑发布了新的文献求助10
11秒前
万宁发布了新的文献求助10
11秒前
燕研发布了新的文献求助10
11秒前
学术混子发布了新的文献求助30
11秒前
在水一方应助淡定的草莓采纳,获得10
11秒前
华仔应助义气的慕卉采纳,获得10
11秒前
宛宛发布了新的文献求助10
12秒前
yoarfol发布了新的文献求助10
12秒前
Yu发布了新的文献求助10
13秒前
13秒前
压力完成签到,获得积分10
13秒前
13秒前
飘飘完成签到,获得积分10
13秒前
CR7发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Signals, Systems, and Signal Processing 400
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4620763
求助须知:如何正确求助?哪些是违规求助? 4021922
关于积分的说明 12450772
捐赠科研通 3705986
什么是DOI,文献DOI怎么找? 2043902
邀请新用户注册赠送积分活动 1076271
科研通“疑难数据库(出版商)”最低求助积分说明 959185