Accelerating battery innovation: AI-powered molecular discovery.

电池(电) 纳米技术 化学 材料科学 物理 量子力学 功率(物理)
作者
Yuchen Gao,Xiang Chen,Yuhang Yuan,Yao‐Peng Chen,Y. R. Niu,Nan Yao,Yan-Bin Gao,W.Z. Li,Qiang Zhang
出处
期刊:PubMed
标识
DOI:10.1039/d5cs00053j
摘要

The global energy transition urgently demands advanced battery technologies to address current climate challenges, where molecular engineering plays a pivotal role in optimizing performance metrics such as energy density, cycling lifespan, and safety. This review systematically examines the integration of artificial intelligence (AI) into molecular discovery for next-generation battery systems, addressing both transformative potential and sustainability challenges. Firstly, multidimensional strategies for molecular representation are delineated to establish machine-readable inputs, serving as a prerequisite for AI-driven molecular discovery (Section 2). Subsequently, AI algorithms are systematically summarized, encompassing classical machine learning, deep learning, and the emerging class of large language models (Section 3). Next, the substantial potential of AI-powered predictions for key electrochemical properties is illustrated, including redox potential, viscosity, and dielectric constant (Section 4). Through paradigmatic case studies, significant applications of AI in molecular design are elucidated, spanning chemical knowledge discovery, high-throughput virtual screening, oriented molecular generation, and high-throughput experimentation (Section 5). Finally, a general conclusion and a critical perspective on current challenges and future directions are presented, emphasizing the integration of molecular databases, algorithms, computational power, and autonomous experimental platforms. AI is expected to accelerate molecular design, thereby facilitating the development of next-generation battery systems and enabling sustainable energy innovations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助kd采纳,获得10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
yyyyyxn发布了新的文献求助10
1秒前
CJN完成签到,获得积分10
2秒前
2秒前
翁杰完成签到,获得积分10
2秒前
Zz发布了新的文献求助10
2秒前
3秒前
甜甜易真发布了新的文献求助10
6秒前
wxy发布了新的文献求助10
6秒前
Morning发布了新的文献求助10
6秒前
Peter完成签到 ,获得积分10
6秒前
7秒前
Yags完成签到,获得积分10
7秒前
涂博强完成签到,获得积分10
7秒前
在水一方应助zyyys采纳,获得10
8秒前
daidai发布了新的文献求助10
8秒前
Brady6发布了新的文献求助10
8秒前
11发布了新的文献求助30
8秒前
xxfsx举报Hedy求助涉嫌违规
8秒前
yyyyyxn完成签到,获得积分10
9秒前
小杭76应助light采纳,获得10
9秒前
半圆亻发布了新的文献求助10
9秒前
klyang应助HBin采纳,获得20
9秒前
Deakkw完成签到,获得积分10
11秒前
所爱皆在发布了新的文献求助10
14秒前
14秒前
星辰大海应助千世kk采纳,获得10
14秒前
F_echo发布了新的文献求助10
15秒前
16秒前
爆米花应助ll采纳,获得10
17秒前
欣喜大白菜真实的钥匙完成签到 ,获得积分20
17秒前
18秒前
xz应助joleisalau采纳,获得10
18秒前
缓慢的花生完成签到 ,获得积分10
19秒前
muguang67完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183317
求助须知:如何正确求助?哪些是违规求助? 4369689
关于积分的说明 13607154
捐赠科研通 4221493
什么是DOI,文献DOI怎么找? 2315198
邀请新用户注册赠送积分活动 1313946
关于科研通互助平台的介绍 1262737