Change Point Detection in Dynamic Networks via Regularized Tensor Decomposition

张量分解 分解 计算机科学 数学 点过程 点(几何) 张量(固有定义) 人工智能 算法 统计 纯数学 几何学 生态学 生物
作者
Y.Y. Zhang,Jingnan Zhang,Yifan Sun,Junhui Wang
出处
期刊:Journal of Computational and Graphical Statistics [Taylor & Francis]
卷期号:33 (2): 515-524 被引量:2
标识
DOI:10.1080/10618600.2023.2240864
摘要

AbstractDynamic network captures time-varying interactions among multiple entities at different time points, and detecting its structural change points is of central interest. This paper proposes a novel method for detecting change points in dynamic networks by fully exploiting the latent network structure. The proposed method builds upon a tensor-based embedding model, which models the time-varying network heterogeneity through an embedding matrix. A fused lasso penalty is equipped with the tensor decomposition formulation to estimate the embedding matrix and a power update algorithm is developed to tackle the resultant optimization task. The error bound of the obtained estimated embedding matrices is established without incurring the computational-statistical gap. The proposed method also produces a set of estimated change points, which, coupled with a simple screening procedure, assures asymptotic consistency in change point detection under much milder assumptions. Various numerical experiments on both synthetic and real datasets also support its advantage.Keywords: Fused lassolatent factor modelmulti-layer networknetwork embeddingtensor power methodDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentThe authors are grateful to the associate editor and two anonymous referees, whose insightful comments and constructive suggestions have led to significant improvements in the article. JZ's research is supported in part by" USTC Research Funds of the Double First-Class Initiative" YD2040002020, YS's research is supported in part by NSFC Grant 12171479, and JW's research is supported in part by HK RGC Grants GRF-11304520, GRF-11301521, GRF-11311022, and CUHK Startup Grant 4937091. The authors report there are no competing interests to declare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
panbaobao应助Bin_Liu采纳,获得10
1秒前
QDU发布了新的文献求助10
2秒前
HDrinnk完成签到,获得积分10
2秒前
janice116688完成签到,获得积分10
3秒前
3秒前
jingjing发布了新的文献求助10
4秒前
zxxx完成签到,获得积分10
5秒前
帅气小霜发布了新的文献求助10
7秒前
尛瞐慶成发布了新的文献求助20
8秒前
8秒前
十一发布了新的文献求助10
9秒前
11秒前
jingjing完成签到,获得积分10
12秒前
12秒前
Albert发布了新的文献求助10
14秒前
十一完成签到,获得积分20
16秒前
17秒前
17秒前
尛瞐慶成发布了新的文献求助10
17秒前
瘦瘦的迎南完成签到 ,获得积分10
17秒前
19秒前
19秒前
boluo666完成签到 ,获得积分10
21秒前
王yuu发布了新的文献求助10
21秒前
21秒前
19854173750完成签到,获得积分20
21秒前
真找不到完成签到,获得积分10
22秒前
薛栋潮完成签到 ,获得积分10
23秒前
19854173750发布了新的文献求助10
24秒前
唠叨的墨镜完成签到,获得积分10
24秒前
25秒前
真找不到发布了新的文献求助10
25秒前
25秒前
HaHa007完成签到,获得积分10
25秒前
111发布了新的文献求助10
26秒前
薛栋潮关注了科研通微信公众号
26秒前
猪猪hero应助jackycas采纳,获得10
27秒前
29秒前
meimei完成签到 ,获得积分10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779897
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222437
捐赠科研通 3040465
什么是DOI,文献DOI怎么找? 1668851
邀请新用户注册赠送积分活动 798805
科研通“疑难数据库(出版商)”最低求助积分说明 758563