Materials characterization: Can artificial intelligence be used to address reproducibility challenges?

表征(材料科学) 计算机科学 工作流程 数据科学 人工智能 代表(政治) 接口(物质) 鉴定(生物学) 机器学习 纳米技术 材料科学 植物 气泡 数据库 最大气泡压力法 政治 并行计算 政治学 法学 生物
作者
Miu Lun Lau,Abraham Burleigh,Jeff Terry,Min Long
出处
期刊:Journal of vacuum science & technology [American Institute of Physics]
卷期号:41 (6) 被引量:7
标识
DOI:10.1116/6.0002809
摘要

Material characterization techniques are widely used to characterize the physical and chemical properties of materials at the nanoscale and, thus, play central roles in material scientific discoveries. However, the large and complex datasets generated by these techniques often require significant human effort to interpret and extract meaningful physicochemical insights. Artificial intelligence (AI) techniques such as machine learning (ML) have the potential to improve the efficiency and accuracy of surface analysis by automating data analysis and interpretation. In this perspective paper, we review the current role of AI in surface analysis and discuss its future potential to accelerate discoveries in surface science, materials science, and interface science. We highlight several applications where AI has already been used to analyze surface analysis data, including the identification of crystal structures from XRD data, analysis of XPS spectra for surface composition, and the interpretation of TEM and SEM images for particle morphology and size. We also discuss the challenges and opportunities associated with the integration of AI into surface analysis workflows. These include the need for large and diverse datasets for training ML models, the importance of feature selection and representation, and the potential for ML to enable new insights and discoveries by identifying patterns and relationships in complex datasets. Most importantly, AI analyzed data must not just find the best mathematical description of the data, but it must find the most physical and chemically meaningful results. In addition, the need for reproducibility in scientific research has become increasingly important in recent years. The advancement of AI, including both conventional and the increasing popular deep learning, is showing promise in addressing those challenges by enabling the execution and verification of scientific progress. By training models on large experimental datasets and providing automated analysis and data interpretation, AI can help to ensure that scientific results are reproducible and reliable. Although integration of knowledge and AI models must be considered for the transparency and interpretability of models, the incorporation of AI into the data collection and processing workflow will significantly enhance the efficiency and accuracy of various surface analysis techniques and deepen our understanding at an accelerated pace.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助Yun yun采纳,获得10
1秒前
秋水伊人发布了新的文献求助30
2秒前
不配.应助YYY采纳,获得200
2秒前
4秒前
4秒前
4秒前
5秒前
天天快乐应助silsotiscolor采纳,获得10
5秒前
JJ完成签到,获得积分10
7秒前
FashionBoy应助Yan采纳,获得10
7秒前
Bellamy完成签到,获得积分20
9秒前
刘肖发布了新的文献求助10
9秒前
谢谢发布了新的文献求助30
9秒前
大模型应助可靠冥幽采纳,获得10
10秒前
paopao发布了新的文献求助10
10秒前
秋天发布了新的文献求助10
10秒前
脑洞疼应助guoxt采纳,获得10
11秒前
12秒前
英姑应助柚子街采纳,获得10
12秒前
李爱国应助北陆玄枵采纳,获得10
13秒前
所所应助Lee采纳,获得10
13秒前
YOUNG-M发布了新的文献求助10
15秒前
斯文白梦完成签到 ,获得积分10
17秒前
秋水伊人完成签到,获得积分10
17秒前
Gonna发布了新的文献求助30
17秒前
17秒前
18秒前
dakjdia完成签到,获得积分10
19秒前
圆圆的馒头完成签到,获得积分10
19秒前
帅哥吴克完成签到,获得积分10
19秒前
上官若男应助现代雪晴采纳,获得10
20秒前
20秒前
JamesPei应助踏实的幼荷采纳,获得10
21秒前
21秒前
桐桐应助Gonna采纳,获得10
21秒前
silsotiscolor发布了新的文献求助10
22秒前
orange完成签到,获得积分10
22秒前
如意水彤完成签到,获得积分10
22秒前
余增辉发布了新的文献求助30
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208665
求助须知:如何正确求助?哪些是违规求助? 4386064
关于积分的说明 13659715
捐赠科研通 4245076
什么是DOI,文献DOI怎么找? 2329120
邀请新用户注册赠送积分活动 1326906
关于科研通互助平台的介绍 1279163