迭代学习控制
黑森矩阵
序列(生物学)
方案(数学)
数学优化
趋同(经济学)
计算机科学
班级(哲学)
最优化问题
基质(化学分析)
收敛速度
数学
控制理论(社会学)
控制(管理)
应用数学
人工智能
频道(广播)
生物
经济
复合材料
遗传学
经济增长
数学分析
计算机网络
材料科学
摘要
Summary This study proposes a novel iterative learning control scheme for discrete‐time linear systems based on the Broyden‐class optimization method. To overcome the difficulty of lacking system information, a cost function is introduced for the performance index by constructing a positive‐definite matrix with little system information. An optimization‐based learning control algorithm is proposed using a Hessian matrix approximation and the generated input sequence is demonstrated to exhibit a superlinear convergence rate. The proposed scheme is extended to address the point‐to‐point tracking problem. Numerical simulations are provided to verify the effectiveness of the proposed approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI