Machine learning for predicting the viscosity of binary liquid mixtures

机器学习 人工智能 均方误差 二元分类 计算机科学 粘度 试验装置 二进制数 人工神经网络 数据挖掘 材料科学 数学 支持向量机 统计 算术 复合材料
作者
Camille Bilodeau,Andrei F. Kazakov,Sukrit Mukhopadhyay,Jillian Emerson,Tom Kalantar,Chris D. Muzny,Klavs F. Jensen
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:464: 142454-142454 被引量:52
标识
DOI:10.1016/j.cej.2023.142454
摘要

Viscosity is an important parameter in process engineering and is a key design objective for application areas including the coatings, lubricants, personal care, and pharmaceutical industries. The lack of reliable and general methods for predicting the viscosities of mixtures creates a barrier for modern process engineering and product design. In this work, we developed a graph-based neural network architecture and applied it to the problem of predicting the viscosity of binary liquid mixtures as a function of composition and temperature. To obtain a high-quality training dataset, we also developed an automated curation pipeline and applied it to a large dataset collected from the literature by the National Institute of Standards and Technology (NIST) to be used as training data. The resulting model predicts viscosity with an MAE of 0.043 and an RMSE of 0.080 in log cP units (base 10). To improve the dependability of the model, we developed a classifier that evaluated the reliability of a prediction based on the variance between an ensemble of models. Using this approach, the model had an effective MAE of 0.029 and RMSE of 0.047 for predictions that were assessed as reliable (80% of the test set). Overall, this work provides 1) a large set of curated viscosity data that can be used for future machine learning efforts, 2) a new, graph-based deep learning approach for predicting the viscosity of binary mixtures, and 3) an illustrative case study for how deep learning can be used for accurate and reliable property prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安一完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助锦程采纳,获得10
1秒前
1秒前
3秒前
3秒前
柳雅青完成签到 ,获得积分10
4秒前
满意的颦完成签到,获得积分10
5秒前
5秒前
杰老爷发布了新的文献求助10
5秒前
欣喜电源完成签到,获得积分10
6秒前
木土发布了新的文献求助10
6秒前
念一完成签到,获得积分20
6秒前
踏实寒梅发布了新的文献求助10
8秒前
abcdv发布了新的文献求助10
9秒前
9秒前
11秒前
科研通AI2S应助PlanetaryLayer采纳,获得10
11秒前
牛初辰完成签到 ,获得积分10
13秒前
13秒前
Dr.c发布了新的文献求助10
15秒前
科研通AI6应助迷人雪碧采纳,获得10
16秒前
科研通AI6应助学习采纳,获得10
16秒前
17秒前
Cryer2401发布了新的文献求助100
17秒前
19秒前
20秒前
20秒前
BowieHuang应助Nin采纳,获得10
20秒前
123完成签到,获得积分20
22秒前
研友_VZG7GZ应助fghyjnu采纳,获得10
22秒前
22秒前
23秒前
bzlish发布了新的文献求助10
23秒前
23秒前
24秒前
Cryer2401完成签到,获得积分10
25秒前
25秒前
wang完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642782
求助须知:如何正确求助?哪些是违规求助? 4759753
关于积分的说明 15018871
捐赠科研通 4801267
什么是DOI,文献DOI怎么找? 2566588
邀请新用户注册赠送积分活动 1524567
关于科研通互助平台的介绍 1484100