已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prognosis prediction for glioblastoma multiforme patients using machine learning approaches: Development of the clinically applicable model

胶质母细胞瘤 医学 机器学习 人工智能 计算机科学 癌症研究
作者
Yeseul Kim,Kyung Hwan Kim,Junyoung Park,Hong In Yoon,Wonmo Sung
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:183: 109617-109617 被引量:17
标识
DOI:10.1016/j.radonc.2023.109617
摘要

We aimed to develop a clinically applicable prognosis prediction model predicting overall survival (OS) and progression-free survival (PFS) for glioblastoma multiforme (GBM) patients.All 467 patients treated with concurrent chemoradiotherapy at Yonsei Cancer Center from 2016 to 2020 were included in this study. We developed a conventional linear regression, Cox proportional hazards (COX), and non-linear machine learning algorithms, random survival forest (RSF) and survival support vector machine (SVM) based on 16 clinical variables. After backward feature selection and hyperparameter tuning using grid search, we repeated 100 times of cross-validations to combat overfitting and enhance the model performance. Harrell's concordance index (C-index) and integrated brier score (IBS) were employed as quantitative performance metrics.In both predictions, RSF performed much better than COX and SVM. (For OS prediction: RSF C-index = 0.72 90%CI [0.71-0.72] and IBS = 0.12 90%CI [0.10-0.13]; For PFS prediction: RSF C-index = 0.70 90%CI [0.70-0.71] and IBS = 0.12 90%CI [0.10-0.14]). Permutation feature importance confirmed that MGMT promoter methylation, extent of resection, age, cone down planning target volume, and subventricular zone involvement are significant prognostic factors for OS. The importance of the extent of resection and MGMT promoter methylation was much higher than other selected input factors in PFS. Our final models accurately stratified two risk groups with root mean square errors less than 0.07. The sensitivity analysis revealed that our final models are highly applicable to newly diagnosed GBM patients.Our final models can provide a reliable outcome prediction for individual GBM. The final OS and PFS predicting models we developed accurately stratify high-risk groups up to 5-years, and the sensitivity analysis confirmed that both final models are clinically applicable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jiafang完成签到,获得积分10
1秒前
峰妹完成签到 ,获得积分10
2秒前
2秒前
洁净的千凡完成签到 ,获得积分20
3秒前
红毛兔完成签到 ,获得积分10
3秒前
竹筏过海完成签到,获得积分0
5秒前
OJL完成签到,获得积分10
5秒前
阿邦发布了新的文献求助10
5秒前
牙牙发布了新的文献求助10
6秒前
7秒前
liwhao完成签到,获得积分10
8秒前
yinlao完成签到,获得积分0
9秒前
伶俐的无血完成签到 ,获得积分10
10秒前
hhh完成签到,获得积分10
11秒前
韩立完成签到 ,获得积分10
11秒前
Ou完成签到,获得积分10
13秒前
14秒前
15秒前
动听衬衫完成签到 ,获得积分10
15秒前
Felix完成签到,获得积分10
16秒前
liwhao发布了新的文献求助10
16秒前
齐纳完成签到,获得积分10
17秒前
17秒前
大大怪将军完成签到,获得积分10
17秒前
19秒前
siri1313完成签到,获得积分10
20秒前
李勤_秦礼完成签到,获得积分20
21秒前
市不辣发布了新的文献求助10
21秒前
tang完成签到 ,获得积分10
22秒前
方旭明完成签到 ,获得积分10
23秒前
英姑应助哈哈采纳,获得10
25秒前
25秒前
hy完成签到 ,获得积分10
25秒前
26秒前
27秒前
27秒前
落落洛栖完成签到 ,获得积分10
28秒前
29秒前
小满完成签到,获得积分10
30秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345367
求助须知:如何正确求助?哪些是违规求助? 4480383
关于积分的说明 13946022
捐赠科研通 4377817
什么是DOI,文献DOI怎么找? 2405458
邀请新用户注册赠送积分活动 1398029
关于科研通互助平台的介绍 1370423