HR_BMNet: a boundary perception and multiresolution fusion network for semantic segmentation of remote sensing

分割 计算机科学 人工智能 融合 边界(拓扑) 感知 计算机视觉 传感器融合 图像分割 数学 心理学 数学分析 哲学 语言学 神经科学
作者
Yan Chen,Mengyuan Wang,Wenxiang Jiang,Menglei Kang,Xiaofeng Wang
标识
DOI:10.1117/12.3035358
摘要

The conventional approach for semantic segmentation of remote sensing imagery using encoder-decoder convolutional neural networks relies on the output of prior feature maps sequentially without considering the interactions between neighboring contextual feature maps with multiple resolutions. While the standard HRNet proposal has successfully improved multi-resolution semantic and spatial features to address the aforementioned issues, its lack of emphasis on boundary perception often results in inadequate target segmentation. Furthermore, a frequent occurrence of multiresolution contextual interaction in HRNet leads to the addition of a significant quantity of redundant information and amplifies the complexity of the model. Hence, to tackle the abovementioned issues, we propose a semantic segmentation network identified as HR-BMNet, which incorporates boundary sensitivity and multiple-resolution learning. The idea associated with standard HRNet is adopted as the foundational architecture. We extend novel boundary perception and multi-resolution fusion attention modules, integrating channel attention mechanisms. The strategy provides an ex-tensive optimization of edges and the efficient capture of crucial multi-scale features. During the feature combination stage, the boundary insights are employed to augment the semantic information, thereby mitigating the spatial details loss, enhancing the intra-class semantic consistency, and achieving superior segmentation. The efficacy of the proposed method is validated through comparison and ablation experiments conducted on the ISPRS Vaihingen and CSRSD datasets. Among the experiments conducted, the best ones attained a mean Intersection over Union (mIoU) of 72.11% on the Vaihingen dataset and 89.28% on the CSRSD dataset, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小可爱发布了新的文献求助10
刚刚
si发布了新的文献求助10
刚刚
1秒前
1秒前
理想三寻完成签到,获得积分10
2秒前
个木完成签到,获得积分20
2秒前
4秒前
有魅力的臻完成签到,获得积分10
4秒前
4秒前
dominate完成签到,获得积分10
4秒前
AURORA发布了新的文献求助10
5秒前
6秒前
aliu发布了新的文献求助10
7秒前
专注流沙发布了新的文献求助10
8秒前
si完成签到,获得积分10
9秒前
11秒前
12秒前
LJ完成签到,获得积分10
12秒前
爆米花应助专注流沙采纳,获得10
12秒前
mbxjsy发布了新的文献求助10
15秒前
15秒前
认真夜云发布了新的文献求助30
16秒前
17秒前
饿了呼啦啦完成签到 ,获得积分10
17秒前
19秒前
20秒前
shy发布了新的文献求助10
20秒前
一一应助nusiew采纳,获得10
20秒前
丑123发布了新的文献求助10
22秒前
23秒前
23秒前
Ice完成签到 ,获得积分10
23秒前
缓慢思枫发布了新的文献求助10
24秒前
26秒前
Lixuan完成签到 ,获得积分20
26秒前
英姑应助稳重的招牌采纳,获得10
26秒前
luyao970131发布了新的文献求助10
27秒前
小线团黑桃完成签到,获得积分10
27秒前
丘比特应助科研通管家采纳,获得10
27秒前
852应助科研通管家采纳,获得10
28秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802474
求助须知:如何正确求助?哪些是违规求助? 3348068
关于积分的说明 10336437
捐赠科研通 3064012
什么是DOI,文献DOI怎么找? 1682348
邀请新用户注册赠送积分活动 808078
科研通“疑难数据库(出版商)”最低求助积分说明 763997